next up previous
Next: 7 $B%j!<%^%sLdBj(B Up: $BHs@~7AJPHyJ,J}Dx<0F~Lg(B 1 Previous: 5 $B=`@~7AJ}Dx<0(B (PDF ¥Õ¥¡¥¤¥ë: pdetutor.pdf)


6 $BW7bGH(B

$BITO"B3$J4X?t$r$bHyJ,J}Dx<0(B (17) $B$N2r$H$_$k$K$O$I$&$7$?$i(B $B$h$$$@$m$&$+!#(B $B$R$H$D$K$OD64X?t$NM}O@$rMQ$$$FITO"B34X?t$rHyJ,$9$k!"$H$$$&J}K!$,(B $B$"$k$,!"$3$3$G$O$3$NJ}Dx<0(B (17) $B$N@QJ,7A$rF3$-!"$=$l$r(B $BMxMQ$7$F9M$($F$_$k$3$H$K$9$k!#(B

$B$^$:(B $0<t_1<t_2$, $a<b$ $B$H$J$k$h$&$J(B $t_1$, $t_2$, $a$, $b$ $B$r>!

\begin{displaymath}
Q = \{(t,x);\ t_1\leq t\leq t_2, \ a\leq x \leq b\}
\end{displaymath}

$B$G!"J}Dx<0(B (17) $BA4BN$r(B 2 $B=E@QJ,$9$k!#(B $B9g@.4X?t$NHyJ,K!B'(B

\begin{displaymath}
g(u)_x = \frac{\partial g(u)}{\partial x} = \frac{d g(u)}{d u}\frac{\partial u}{\partial x} = g'(u)u_x
\end{displaymath}

$B$h$j(B

\begin{displaymath}
uu_x = \left(\frac{u^2}{2}\right)_x
\end{displaymath}

$B$G$"$k$3$H!"$*$h$S(B 2 $B=E@QJ,$N8x<0(B

\begin{displaymath}
\int\hspace{-6pt}\int _Q g(t,x)\ dtdx
= \int_{t_1}^{t_2}\le...
...\} dt
= \int_a^b \left\{\int_{t_1}^{t_2} g(t,x)\ dt\right\} dx
\end{displaymath}

$B$KCm0U$9$k!#$3$l$i$rMQ$$$F@QJ,$r7W;;$9$k$H(B

\begin{eqnarray*}
\lefteqn{\int\hspace{-6pt}\int _Q u_t(t,x) dtdx} \\
& = & \...
...frac{u(t,b)^2}{2} dx
- \int_{t_1}^{t_2} \frac{u(t,a)^2}{2} dx
\end{eqnarray*}



$B$H$J$k$N$G!"7k6I
\begin{displaymath}
\int_a^b u(t_2,x) dx - \int_a^b u(t_1,x) dx
+ \int_{t_1}^{...
...c{u(t,b)^2}{2} dx
- \int_{t_1}^{t_2} \frac{u(t,a)^2}{2} dx =0\end{displaymath} (22)

$B$3$N<0$K$O$b$O$dHyJ,$O4^$^$l$F$$$J$$!#$7$+$b(B $u$ $B$,HyJ,2DG=$J4X?t$J$i$P(B (17) $B$H!"$9$Y$F$N(B $t_1$ ,$t_2$, $a$, $b$ $B$KBP$7$F(B (22) $B$rK~$?$9$3$H$H$OF1CM$K$J$k!#(B $B$h$C$F(B $u$ $B$,ITO"B3$J4X?t$N>l9g!"$9$Y$F$N(B $t_1$ ,$t_2$, $a$, $b$ $B$KBP$7$F(B (22) $B$rK~$?$9$J$i$P!"$=$N4X?t(B $u$ $B$OHyJ,J}Dx<0(B (17) $B$N(B $B $B$G$"$k!"$H$$$&$3$H$K$9$k!#(B

$B17) $B$rK~$?$94X?t$G$"$k!#$h$C$F $B:#!"(B$u=u(t,x)$ $B$, $B$N>e$GITO"B3$G(B $B$=$NN>B&$G$O$=$l$>$lO"B3$K$J$C$F$$$k$H$9$k!#(B

$B?^(B 15: $BITO"B3$J
\includegraphics[width=\textwidth]{image/shock3d.eps}

$B$D$^$j4X?t$N%0%i%U$O!"CGAX$,Av$C$F$$$k$h$&$J?^$K$J$k$o$1$G$"$k$,!"(B $B$3$NCGAX(B $x=\phi(t)$ $B$HITO"B3$NCJ:9$H$N4X78$rD4$Y$F$_$k!#(B

$t=t_0>0$ $B$r0l$D $B$H$9$k!#$^$?!"(B$\Delta t$, $\Delta x$ $B$rHs>o$K>.$5$$@5$N?t$H$7!"(B$\Delta t$ $B$O(B $\Delta x$ $B$K(B $BHf$Y$FHs>o$K>.$5$$$H$9$k!#$3$N$H$-!">e$ND9J}7ANN0h$H$7$F(B

\begin{displaymath}
Q=\{(t,x);\ t_0\leq t\leq t_0+\Delta t,
\ x_0-\Delta x\leq x \leq x_0+\Delta x\}
\end{displaymath}

$B$r, $t_2=t_0+\Delta t$, $a=x_0-\Delta x$, $b=x_0+\Delta x$ $B$H$9$k!#(B

$B?^(B 16: $BNN0h(B $Q$
\includegraphics{image/Q.eps}

$\Delta t$, $\Delta x$ $B$,Hs>o$K>.$5$$$H$9$l$P!"$3$NNN0hFb$N(B $BCGAX$N:8B&(B $x<\phi(t)$ $B$G$N(B $u$ $B$NCM$O(B

\begin{displaymath}
u_{\ell} = u(t_0,x_0-0) = \lim_{x\rightarrow x_0-0} u(t_0,x)
\end{displaymath}

$B$NCM$KHs>o$K6a$$!#F1MM$K!"CGAX$N1&B&(B $x>\phi(t)$ $B$G$N(B $u$ $B$NCM$O(B

\begin{displaymath}
u_r = u(t_0,x_0+0) = \lim_{x\rightarrow x_0+0} u(t_0,x)
\end{displaymath}

$B$NCM$KHs>o$K6a$$!#(B $B$3$l$i$r9M$($k$H!"(B(22) $B$N3F9`$KBP$7$F(B

\begin{eqnarray*}
\lefteqn{\int_a^b u(t_2,x) dx - \int_a^b u(t_1,x) dx}\\
& =...
...\ell}^2}{2} dt \\
& = & \frac{1}{2}(u_r^2-u_{\ell}^2)\Delta t
\end{eqnarray*}



$B$N$h$&$J6a;w<0$,@.$jN)$D$N$G!"(B(22) $B$K$h$j(B

\begin{displaymath}
-u_r\Delta \phi + u_{\ell}\Delta \phi
+\frac{1}{2}(u_r^2-u_{\ell}^2)\Delta t \approx 0
\end{displaymath}

$B$H$J$j!"(B

\begin{displaymath}
(u_r- u_{\ell})\frac{\Delta \phi}{\Delta t}
\approx\frac{1}{2}(u_r^2-u_{\ell}^2)
= \frac{1}{2}(u_r-u_{\ell})(u_r+u_{\ell})
\end{displaymath}

$B$,@.$jN)$D$,!"(B$u_r-u_{\ell}$ $B$OCJ:9$G$"$k$+$i2>Dj$K$h$j(B 0 $B$G$O$J$/!"(B $B$h$C$F(B

\begin{displaymath}
\frac{\Delta \phi}{\Delta t} \approx\frac{u_r+u_{\ell}}{2}
\end{displaymath}

$B$,@.$jN)$D!#$3$3$G!"(B $\Delta t\rightarrow 0$ $B$H$9$k$H!"(B $B$3$N6a;w<0$OEy<0$H$J$j!"(B $\Delta\phi/\Delta t\rightarrow \phi'(t_0)$ $B$@$+$i!"7k6I(B
\begin{displaymath}
\phi'(t_0)=\frac{u_r+u_{\ell}}{2}\end{displaymath} (23)

$B$H$$$&4X78<0$,@.$jN)$D$3$H$H$J$k!#(B $B$B%i%s%-%s(B-$B%f%4%K%*>r7o(B (the Rankine-Hugoniot condition)
$B$H8F$s$G$$$k!#(B

$\phi'(t_0)$ $B$O(B $t=t_0$ $B$G$N(B $x=\phi(t)$ $B$N;~4VHyJ,!"(B $B$9$J$o$ACGAX$N?J9TB.EY$rI=$7$F$$$k$N$G!"(B(23) $B$N<0$O!"(B $B$=$l$,(B $(u_r+u_{\ell})/2$, $B$9$J$o$ACGAX$NN>B&$NCM$NJ?6QCM$KEy$7$$$3$H$r(B $B0UL#$7$F$$$k!#(B

$BFC@-6J@~$N?J9TB.EY$O!"J}Dx<0(B (17) $B$N(B $u_x$ $B$N78?t$G$"$k(B $u$ $B$KEy$7$$$+$i!"$3$NCGAX$N?J9TB.EY$O!"CGAX$NN>B&$NFC@-6J@~$N?J9TB.EY(B $B$NJ?6Q$K$J$k!"$H9M$($k$3$H$b$G$-$k!#(B $B$3$N$3$H$+$iFC@-6J@~$H!"CGAX$N4X78$O0J2<$N(B 2 $B$D$N$$$:$l$+$G$"$k$3$H$,(B $BJ,$+$k!#(B

    $\displaystyle u_{\ell} < \phi'(t_0) < u_r$ (24)
    $\displaystyle u_{\ell} > \phi'(t_0) > u_r$ (25)

$B?^(B 17: $BCGAX$HFC@-6J@~(B ($B:8$,(B (24), $B1&$,(B (25) $B$KBP1~(B)
\includegraphics[width=0.47\textwidth]{image/nonLax.eps} \includegraphics[width=0.47\textwidth]{image/Lax.eps}

$B$7$+$7!"85!9$3$NITO"B3$J2r$O!"FC@-6J@~$,$V$D$+$k$3$H$K$h$j(B $u$ $B$NCM$,(B $B0l$D$K7h$^$i$J$/$J$k$3$H$r2r>C$9$k$?$a$KF3F~$5$l$?$b$N$G$"$k$+$i!"(B (24) $B$N$h$&$J!"FC@-6J@~$,$V$D$+$i$J$$$b$N$O(B $BITE,@Z$H$_$J$7!"$3$N$h$&$J>l9g$O$`$7$m8r$o$i$J$$FC@-6J@~$K$h$k3j$i$+(B $B$J2r$r:NMQ$9$k$3$H$H$9$k$N$,<+A3$G$"$k!#(B $B$9$J$o$A!"25) $B$NITEy<0$,@.$jN)$D$3$H$r>r7o$H$7$F2]$9$3$H$H$9$k!#(B $B$3$N>r7o$r(B $B%i%C%/%9>r7o(B (Lax's condition)$B!"$^$?$O(B $B%(%s%H%m%T!<>r7o(B (entropy condition) $B$H8F$s$G$$$k!#(B $B$=$7$F!"$3$N%(%s%H%m%T!<>r7o$rK~$?$9ITO"B3$JCGAX$r(B $B>W7bGH(B (shock wave) $B$H8F$V!#(B

$B>W7bGH!"%(%s%H%m%T!<>r7o!"%i%s%-%s(B-$B%f%4%K%*>r7o$H$$$C$?MQ8l$O!"(B $B$$$:$l$b85!95$BNNO3X$K$*$$$FMQ$$$i$l$?$b$N$G$"$k!#(B


next up previous
Next: 7 $B%j!<%^%sLdBj(B Up: $BHs@~7AJPHyJ,J}Dx<0F~Lg(B 1 Previous: 5 $B=`@~7AJ}Dx<0(B
Shigeharu TAKENO
2001$BG/(B 9$B7n(B 21$BF|(B