next up previous
Next: 2 $BFC@-6J@~(B Up: $BHs@~7AJPHyJ,J}Dx<0F~Lg(B 1 Previous: $B$O$8$a$K(B (PDF ¥Õ¥¡¥¤¥ë: pdetutor.pdf)


1 1 $B 2 $B3,$N@~7AJPHyJ,J}Dx<0(B
\begin{displaymath}
u_{tt}-a^2 u_{xx}=0 \hspace{1zw}(u=u(t,x),\ a\mbox{ $B$O@5$NDj?t(B})\end{displaymath} (1)

$B$O!">e2<$K>.$5$/1?F0$9$k89$N?6F0$J$I$r$"$i$o$9J}Dx<0$G!"(B1 $Bl9g$O(B $t$ $B$O;~9o!"(B$x$ $B$O>l=j!"(B$u$ $B$O(B $B89$N9b$5$r0UL#$9$k!#(B

$B?^(B 1: $B89$N?6F0(B
\includegraphics[width=\textwidth]{image/string.eps}

$B$?$@$7!"Bg$-$$?6I}$KBP$7$F$O!"$3$NJ}Dx<0$rK~$?$94X?t$HJ*M}8=>]$H$O(B $BI,$:$7$bBP1~$7$J$$!#$=$l$O$3$NJ}Dx<0$r$I$N$h$&$K$7$FF3$/$+$r8+$l$P(B $B$o$+$k!#J}Dx<0$NF3=P$K$D$$$F$O(B [8], [11] $B$J$I$r(B $B;2>H$;$h!#(B

$B:#!"JPHyJ,$rHyJ,1i;;;R$rMQ$$$F(B

\begin{displaymath}
D_t=\frac{\partial}{\partial t},\
D_x=\frac{\partial}{\partial x}
\end{displaymath}

$B$N$h$&$K=q$/$3$H$K$9$k$H(B (1) $B$O(B

\begin{displaymath}
(D_t^2 - a^2 D_x^2)u = 0
\end{displaymath}

$B$H=q$1!"(B$a$ $B$ODj?t$J$N$G!"HyJ,1i;;;R$KBP$7$F@.$jN)$D8x<0(B

\begin{displaymath}
D_t^2 - a^2 D_x^2 = (D_t - aD_x)(D_t + aD_x)
=(D_t + aD_x)(D_t - aD_x)
\end{displaymath}

$B$K$h$j!"(B

\begin{displaymath}
(D_t - aD_x)(D_t + aD_x) u =(D_t + aD_x)(D_t - aD_x) u = 0
\end{displaymath}

$B$,@.$jN)$D!#$3$N<0$+$iL@$i$+$K!"(B1 $B3,$NJPHyJ,J}Dx<0(B
\begin{displaymath}
(D_t+a D_x)u=0\end{displaymath} (2)

$B$^$?$O(B
\begin{displaymath}
(D_t-a D_x)u=0\end{displaymath} (3)

$B$rK~$?$94X?t(B $u(t,x)$ $B$O(B (1) $B$N2r$G$"$k$3$H$,$o$+$k!#(B $B$3$N5U!"$9$J$o$A(B (1) $B$rK~$?$;$P(B (2) $B$^$?$O(B (3) $B$rK~$?$9!"$H$$$&$3$H$O$b$A$m$s@.$jN)$?$J$$!#(B

$B$3$N(B (2), (3) $B$O$=$l$>$l

$\displaystyle u(t,x)$ $\textstyle =$ $\displaystyle f(x-at)$ (4)
$\displaystyle u(t,x)$ $\textstyle =$ $\displaystyle g(x+at)$ (5)

$B$?$@$7!"(B$f(x)$, $g(x)$ $B$O3j$i$+$JG$0U$N4X?t$G$"$k!#$3$l$i$,$=$l$>$l(B (2), (3) $B$rK~$?$9$3$H$OJPHyJ,(B $B$N7W;;$K$h$jMF0W$K3N$+$a$i$l$k!#(B

$B:#!"(B(4) $B$r(B $x$ $B$N4X?t$H9M$($k$H!"$3$N4X?t$O(B $f(x)$ $B$N%0%i%U$r1&$K(B $at$ $BJ?9T0\F0$7$?$b$N$K$J$C$F$$$k!#$D$^$j!"(B $B%0%i%U$N7A$OJQ$o$i$:$K!"1&$K(B 1 $BICEv$?$j(B ($t$ $B$NC10L$rIC$H$9$l$P(B) $a$ cm $B$@$1(B ($x$ $B$NC10L$r(B cm $B$H$9$l$P(B) $BJ?9T0\F0$7$?$3$H$K$J$j!"(B $B$9$J$o$A!"B.EY(B $a$ [cm/$BIC(B] $B$GJ?9T0\F0$7$F$$$k!"$H$_$J$9$3$H$,(B $B$G$-$k!#$3$l$O1&$X?J$`(B ``$BGH(B'' $B$H8+$k$3$H$,$G$-$k!#(B

$B?^(B 2: $B1&$X?J$`GH(B
\includegraphics[width=\textwidth]{image/move.eps}

(5) $B$O5UJ}8~$K(B $g(x)$ $B$N%0%i%U$rJ?9T0\F0$7$?(B $B7A$N4X?t$K$J$C$F$$$F!"$9$J$o$A(B $-a$ [cm/$BIC(B] $B$G?J$`(B ``$BGH(B'' $B$G$"$k!#(B

$B85$NJ}Dx<0(B (1) $B$O@~7A$G$"$j!"2r$N$$$/$D$+$r2C$(9g(B $B$o$;$?$b$N$b$^$?2r$H$J$k$N$G!"$h$C$F(B (1) $B$O(B

\begin{displaymath}
u(t,x)=f(x-at)+g(x+at)\end{displaymath} (6)

$B$H$$$&7A$N2r$r;}$D!#(B

$B1) $B$N2r$OI,$:(B (6) $B$N7A$K(B $B$J$k$3$H$,CN$i$l$F$$$k(B ($B$3$l$K$D$$$F$O(B [8], [11] $B$J$I$r;2>H(B)$B!#(B

2 $B3,$NJ}Dx<0$N2r$,!">o$K(B 1 $B3,$NJ}Dx<0$N2r$+$iF@$i$l$k$H$O8B$i$J$$$,!"(B 1 $Bl9g$O(B (1) $B$H!"(B (2) $B$d(B (3) $B$N7A$NJ}Dx<0(B

\begin{displaymath}
u_t+a u_x=0 \hspace{1zw}(\mbox{$B$^$?$O(B } u_t-a u_x =0)
\end{displaymath}

$B$K$O?<$$$D$J$,$j$,$"$k$3$H$,$o$+$k!#$3$NJ}Dx<0$O(B $BGHF08=>]$r2r@O$9$k>e$G4pK\$H$J$k$b$N$G$"$j!"(B$B0\N.J}Dx<0(B $B$H8F$P$l$F$$$k!#(B

$B0J2]$r(B $B9M$($F$_$k!#(B


next up previous
Next: 2 $BFC@-6J@~(B Up: $BHs@~7AJPHyJ,J}Dx<0F~Lg(B 1 Previous: $B$O$8$a$K(B
Shigeharu TAKENO
2001$BG/(B 9$B7n(B 21$BF|(B