next up previous
Next: 5 Compactness of entropy Up: Time-periodic solutions Previous: 3 Approximate Solution (PDF file: paper9.pdf)


4 Decay estimates

In this section, we obtain the estimate for the approximation $u^\Delta (t,x)$ constructed in the last section by the similar way to Tadmor ([13]) for fractional step Lax-Friedrichs difference approximation.

The step values $u^n_j=u(n\Delta t,j\Delta x)$ are able to be described as forms of the Lax-Friedrichs difference scheme

\begin{displaymath}
\begin{array}{l}
\left\{\begin{array}{lll}
u^{2n+1}_j & =...
...nd{array}\right.\\
\hspace{2em}(n=0,1,2,\ldots),
\end{array}\end{displaymath} (18)

where $f^n_j=f(u^n_j)$ and

\begin{displaymath}
g^n_j = \frac{1}{4\Delta t\Delta x}\int_{(n-1)\Delta t}^{(n+1)\Delta t} dt
\int_{(j-1)\Delta x}^{(j+1)\Delta x} g(t,x) dx.
\end{displaymath}

Let $v^n_j$ be the $x$-backward difference of $u^n_j$

\begin{displaymath}
v^n_j=\frac{u^n_j-u^n_{j-2}}{2\Delta x}.
\end{displaymath}

Then,

\begin{eqnarray*}
%% v^{2n+1}_j & = & \frac{u^{2n+1}_j - u^{2n+1}_{j-2}}{2\Dx} ...
...1})
-\Delta t\delta\frac{(v^{2n}_{j+1})^2+(v^{2n}_{j-1})^2}{2}.
\end{eqnarray*}



Similarly,

\begin{eqnarray*}
v^{2n+2}_j & \leq & \frac{v^{2n+1}_{j+1}+v^{2n+1}_{j-1}}{2}
...
...frac{(v^{2n+1}_{j+1})^2+(v^{2n+1}_{j-1})^2}{2}
- 2 G_1\right\},
\end{eqnarray*}



where $G_1$ is the value in (15). Let $N^n=\max_{j}v^n_j$. $N^n$ is non-negative because the summation

\begin{displaymath}
\sum_{j\in J_n,0\leq j< 2L}v^n_j
\end{displaymath}

equals zero from the space periodicity of $u^n_j$. A function

\begin{displaymath}
h(x) = \frac{A}{2}x - \frac{\Delta t\delta}{2}x^2 \hspace{2em}(A>0)
\end{displaymath}

increases for $x\leq A/(2\Delta t\delta)$. Hence, if

\begin{displaymath}
N^{2n}\leq \frac{1}{2\Delta t\delta}(1- \frac{\Delta t}{\Delta x}\Lambda)
\end{displaymath}

then

\begin{displaymath}
N^{2n+1}=\max_{j}v^{2n+1}_j \leq N^{2n} - \Delta t\delta(N^{2n})^2.
\end{displaymath}

Similarly,

\begin{displaymath}
N^{2n+1}\leq \frac{1}{2\Delta t\delta}(1- \frac{\Delta t}{\Delta x}\Lambda)
\end{displaymath}

yields

\begin{displaymath}
N^{2n+2}=\max_{j}v^{2n+1}_j \leq N^{2n} - \Delta t\{\delta(N^{2n})^2-2G_1\}.
\end{displaymath}

The simple estimate for $N^n$

\begin{displaymath}
N^n = \max_j v^n_j = \max_j \frac{u^n_j-u^n_{j-2}}{2\Delta x}
\leq \frac{M+TG_0}{\Delta x}
\end{displaymath}

shows that if
\begin{displaymath}
2\delta(M+TG_0)+\Lambda \leq \frac{\Delta x}{\Delta t},\end{displaymath} (19)

then
\begin{displaymath}
\frac{N^{2n+2}-N^{2n}}{2\Delta t} \leq G_1 - \frac{\delta}{2}(N^{2n})^2\end{displaymath} (20)

for $n \leq N-1$ since

\begin{eqnarray*}
N^{2n+1} & \leq & N^{2n} - \Delta t\delta (N^{2n})^2 \leq N^{...
...\\
& \leq & N^{2n} - \Delta t\delta (N^{2n})^2 + 2\Delta tG_1.
\end{eqnarray*}



The solution $y(t)$ of ordinary differential equation

\begin{displaymath}
\left\{\begin{array}{l}
\displaystyle y'=G_1 - \frac{\delta}{2}y^2 [3ex]
y(0)=N^0\end{array}\right.\end{displaymath}

tends to the value
\begin{displaymath}
\alpha=\sqrt{2G_1/\delta}\end{displaymath} (21)

as $t$ tends to infinity. If $N^0>\alpha$ then $y(t)$ is monotone decreasing convex function, and if $N^0<\alpha$ then $y(t)$ is monotone increasing concave one. In the latter case, the tangent line of $y(t)$ started $t=t_0$ across the line $y=\alpha$ at

\begin{displaymath}
t=t_0 + \frac{2}{\delta(y(t_0)+\alpha)}
\end{displaymath}

and the time is not smaller than $t_0 + 1/(\delta\alpha)$. Hence, if $N^{2n}\leq\alpha$ then $N^{2m}\leq\alpha$ for $n\leq m\leq N$ provided that
\begin{displaymath}
2\Delta t\leq \frac{1}{\delta\alpha}\end{displaymath} (22)

from the inequality (20). In the case $N^0>\alpha$, it is easy to show that
\begin{displaymath}
N^{2m} \leq y(2m\Delta t) \leq \alpha+\frac{2\alpha}{\mbox{\large\it e}^{2m\alpha\delta\Delta t}-1}
\hspace{2em}(m\leq N).\end{displaymath} (23)

We consider the estimate for $u^{2N}_j$ using above estimates for $v^n_j$. For the summation of $u^{2N}_j$

\begin{eqnarray*}
\lefteqn{2\Delta x\sum_{j=1}^L u^{2N}_{2j-1}} \\
& = & 2\De...
...t_0^1 u_0(x)dx + \int_0^T dt\int_0^1 g(t,x)dx \\
& = & \bar{u}
\end{eqnarray*}



from (3).

Next simple lemma is used to the estimate for $u^{2N}_j$.

LEMMA 3   Let $p_j$ be real values which satisfy

\begin{displaymath}
p_1+p_2+\cdots+p_K = 0,
\end{displaymath}

and let

\begin{displaymath}
q_j =
\left\{\begin{array}{ll}
p_j-p_{j-1} & (j=2,3,\ldots,K),\\
p_1-p_K & (j=1).
\end{array}\right. \end{displaymath}

Then

\begin{displaymath}
\max_j \vert p_j\vert\leq \sum_{j=1}^K \vert q_j\vert \leq 2K\max_j q_j.
\end{displaymath}

The proof is omitted.

Let $K=L$, $p_j=u^{2N}_{2j-1}-\bar{u}$ in Lemma 3, then $q_j=2v^{2N}_{2j-1}\Delta x$ and

\begin{displaymath}
\vert u^{2N}_j-\bar{u}\vert \leq 2L \max_j 2\Delta xv^{2N}_j...
...\alpha + \frac{4\alpha}{\mbox{\large\it e}^{\alpha\delta T}-1}
\end{displaymath}

from (23).

PROPOSITION 4   Under assumptions (19), (22)
\begin{displaymath}
\vert u^{2N}_j-\bar{u}\vert\leq 2\alpha + \frac{4\alpha}{\mbox{\large\it e}^{\alpha\delta T}-1}.
\end{displaymath} (24)

Proposition 4 give the time-periodic solution of the difference approximation.

Let $A$ be sufficiently large number such that

\begin{displaymath}
A > 2\alpha + \frac{4\alpha}{\mbox{\large\it e}^{\alpha\delta T}-1},
\end{displaymath}

and let $M=\vert\bar{u}\vert+A$. We take mesh lengths $\Delta x$ and $\Delta t$ to satisfy (19), (22) and
\begin{displaymath}
\frac{\Delta x}{\Delta t} \leq \Lambda_2\equiv 2\{2\delta(M+TG_0)+\Lambda\}\end{displaymath} (25)

for the estimation of the entropy (§5). Let $D_L$ be a set

\begin{eqnarray*}
\lefteqn{ D_L=D_L(\bar{u},A) }\\
& = & \{(u_1,u_2,\ldots,u_...
...u_j = \bar{u},
\hspace{1em}\max \vert u_j-\bar{u}\vert\leq A\}.
\end{eqnarray*}



If we take $(u^0_1,u^0_3,\ldots,u^0_{2L-1})$ from $D_L$, set $u^0_j$ periodically for any $j\in J_0$, then we can construct the approximation $u^\Delta (t,x)$ by the way in §3. Obviously $D_L$ is a closed convex set and the range of the mapping

\begin{displaymath}
D_L \ni (u^0_1,u^0_3,\ldots u^0_{2L-1}) \mapsto
(u^{2N}_1,u^{2N}_3,\ldots u^{2N}_{2L-1})
\end{displaymath}

is contained in $D_L$ from Proposition 4. Hence, we obtain the fixed point
\begin{displaymath}
(\bar{u}^0_1,\bar{u}^0_3,\ldots,\bar{u}^0_{2L-1})\end{displaymath} (26)

of the mapping from Brouwer's fixed point theorem in $D_L$. Of course, the fixed point depends on $\Delta x$.


next up previous
Next: 5 Compactness of entropy Up: Time-periodic solutions Previous: 3 Approximate Solution
Shigeharu TAKENO
15 January 2002