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1 Introduction

In this paper we study a scalar conservation law with an outer force term

U + f(u)x = g<t7 ZE), (1)

where the function f(u) is smooth and convex. The global existence of weak
solutions of the Cauchy problem (1) for any large initial data was proved in
[11]. If initial data uo(z) and an outer force g(t,z) are z-periodic functions
then the solution u(t,z) may be periodic and may be regarded as a solution

of the initial-boundary value problem (1) and

u(0,z) = up(x) (0 <z <1),
u(t,0) =wu(t,1) (t>0).

(2)
We consider the following problem:

If g(t,x) is a time-periodic function with period T, does a time-
periodic solution exist with the same period, assuming the neces-

sary condition

/OT dt /01 g(t,x)dx =0 (3)

for the outer force term g(t,x) 7

For the existence of a time periodic solution, we need the decay of the solution

to the homogeneous equation

with data (2). The decay to the mean value

u= /01 u(t,x)dr = /1 uo(z)dx

0

was obtained under some regularity assumption for the solution at a (slow)

rate 1/t in [7].
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For the viscous equation

ur + f(u)y = ey, 0<z<1, t>0),
w(0,2) = up(x)  (0<xz<1), (5)
w(t,0) = u(t,1), wu.(t,0) =wu.(t 1) (t > 0),

and the homogeneous equation with positive linear term

ur+ f(u), +eu=0 O<z<l1, t>0),

u(0,z) = ug(x) 0<z<1), (6)

u(t,0) = u(t,1) (t >0),
solutions decay at a faster rate assuming e is a positive constant. The fast
decay for each equation gives a sharp enough estimate to demonstrate the
existence of a fixed point of the Poincare map u(0,z) — u(T,z) for each
equation with the time-periodic outer force g(t,x). For systems of conserva-
tion laws, Matsumura—Nishida ([9]) proved the existence of periodic solutions
for viscous isothermal gas equations for any large periodic outer force, and
Matsumura—Yanagi ([10]), Yanagi ([16]) extended the results to the case of
viscous isentropic gases. Feireisl ([6]) proved the existence of periodic solutions
for systems of hyperbolic conservation laws with positive linear term. For such
systems, solutions of the approximation for the homogeneous systems decay
fast uniformly, and he made the sequence of the periodic solutions for the
viscous approximation and showed the convergence by using the compensated
compactness theory.

However, even in the scalar case, we cannot obtain the time-periodic so-
lution of our problem as the limit of the periodic solutions of equation added
g(t,x) to (5) and (6) as ¢ — 0. This is because the estimates for fast decay
depend on the constant € and are not valid in the limit ¢ — 0, and, according
to [7], it does not imply that the decay is fast for the limit equation (4).

On the other hand, the standard method for the proof of the existence

of the weak solution to the equation (1) is to show the convergence of some
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approximate solutions which are constructed by a difference scheme method
or the artificial viscosity method (5).

Tadmor ([13]) proved the slow decay for the Lax—Friedrichs difference ap-
proximations, which does not depend on the mesh size. Note that this is
obtained from Oleinik’s entropy condition ([11]) and from the periodicity of
the boundary condition. We can to solve our problem by such a uniform
estimate.

We remark that any such uniform estimates have not been obtained for
the approximations of systems of conservation laws for large initial data, and
therefore the existence of periodic solutions for systems of equations is still
open.

Our result is the following.

THEOREM 1 Under assumptions (14) and (15) for f and g, the problem
(1), (7) has a time periodic weak solution u(t,z) for any average u, and the

solution satisfies the entropy condition (13).

We remark that the periodic solution of the problem (1), (7) is not unique
with respect to g and .

The outline of the proof of Theorem 1 is the followings. We construct a
Lax—Friedrichs difference approximation for the problem (1), (7) and we will
obtain the estimate of uniform bounds for it by the methods similar to those of
Tadmor ([13]) in §4. The Poincare map is regarded as on the finite dimensional
space for the difference approximation because the approximate solution has
values at each finite point for fixed t. We show the map takes a closed convex
set into the same set. Hence we can use Brouwer’s fixed point theorem for
the existence of the fixed point of the map from the continuity of the approx-
imation. Since these fixed points are uniformly bounded with respect to the

any mesh lengths, we obtain a subsequence that converges to a weak solution
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by the compensated compactness theory ([15]). We check the compactness of
the entropy for the approximation in §5 for the last convergence, and show the
limit is a weak solution of the problem (1), (7) satisfying the entropy condition

in §6.

2 Preliminaries

A function u(t, x) is called the weak solution of the time-periodic problem (1)

and

{ u(t,0) =u(t,1) (0<t<T), (7)

w(0,z) =u(T,z) (0<z<1)
with period T if the function u(¢,z) is bounded measurable in the region
(0,7) x (0,1), and there exists a bounded measurable function @(z) such that
space-periodic extensions of u(t, ), g(t,z) and u(x) satisfy
JI o+ e, + go)dadt + [ a(@){6(0,2) = o(T.x)}dr = 0 (8)
for any ¢(t,z) € Ca([0,T] x R,).
Note that the definition has other equivalent forms. One is the following:
[ (bt f@)b+go)dudi+ [ a(e){6(0,2)~ 6(T, )}z = 0(9)
[0,7]x[0,1]

for any ¢(t,x) € C3([0,T] x [0,1]), &#(t,0) = ¢(¢t,1) (0 <t < T). Another is
expressed in terms of the space-periodic extension of @ and for the space and

time periodic extension of u(t,z). That is, it is required to satisfy

// (udpy + f () + 90) dxdt+/ (0, 2)dx = 0, (10)

for any ¢(t,z) € C}([0,00) x R). The conclusion is that u(t,z) satisfies (9) if

and only if the followings valid

1. w is solution of (1) in weak sense

ut + f(u), =g  distribution sense in (0,7") x (0,1).
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2. u(t,z) converges in weak sense to u(x) as t tends to zero and as ¢ tends

to T

1 T

,/Eu(t,x)dta 1/ u(t,z)dt — ug(z) as e]0
0

9 g JT—e
in L>°(0,1) weaks.
3. f(u(t,e)) and f(u(t,1 —¢€)) converge in weak sense to the same value

S R A (I S (R

€ Jl1—¢
in L>°(0, T') weakx for some function f(t) of L>(0,T).

It seems that the function « which satisfies above conditions is a solution of

the problem (1) satisfying

fu(t,0)) = flu(t, 1)) (0<t<T),
u(0,z) = u(T, x) 0<z<1)

(11)

instead of (7). Certainly, both definitions are equivalent for the weak solution.
However, these include different means for the entropy condition. The bound-
ary condition of the original problem (7) seems to say that the space-periodic
extension satisfies the equation (1), but the problem (11) does not seem to
require it. Hence in the case that boundary values of the weak solution (¢, 0)

and u(t, 1) are different, these should satisfy the entropy condition, that is,

f'(u(t, 1)) > 0> f'(u(t, 0))

for (7), but should not for (11). It remains an open problem whether the
boundary condition (11) is well-posed.

A smooth function pair of u

(U(u), F(u))
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is an entropy pair for the scalar conservation law

w+ flu) =0 (12)
if

Ulu(t,z)); + Fu(z,t)), =0
for a smooth solution of (12). This is equivalent that U and F satisfy

F'(u) = U'(u) f'(u).

The function U called entropy and F called entropy flurz. A weak solution u

satisfies the entropy condition if
Ulu(t,z))e + Fu(x, b)), < U'(u(t,z))g(t,z) in (0,7) x R (13)

for any smooth entropy pair with convex entropy U.

We suppose that the function f(u) is smooth,

f"(u)>6>0 (u€eR), /01 dx /OTg(t,:E)dt =0, (14)

and g¢(t,z) is a time-periodic function with period 7. The last relation for
g(t,x) is need for the existence of a time periodic solution.

We also assume that the space-extension of ¢(t, z) satisfies

g(t,z) —g(t,y) <Gi(z —y)  (z>y) (15)

for any x,y and t, where (; is a constant. The condition is necessary by a
technical reason.
It is well-known that the solution of the Riemann problem for the scalar

conservation law
ur+ f(u), =0 (t>0,2 €R),

u(0,z) =
u (z>0)
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is each of the two typical waves. In the case uw; < wu, the solution is the

rarefaction wave

" (x/t < f(w)),
u(t,e) = () Naft) (flu) </t < flu)),
iy (xft > f'(u,))

and in the case u; > u, the solution is the shock wave
U z/t < s),
u(t,z) = o (@/ )
ur (z/t > s),

where the shock speed s is determined by the Rankine-Hugoniot relation

fur) = fw) = s(up —w)

and Lax’s entropy condition

f(w) > s> f'(u,)

(cE. [7], [12)).
We note that the average on the line t = At

1 Az A J
v IR

for the solution of the Riemann problem is equal to the Lax—Friedrichs differ-
ence approrimation

Up + U At
5 gag U () = flw)}

provided the Courant-Friedrichs—Lewy (CFL) condition

Az

g > max{[f ()] [f (ur)l}-
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3 Approximate Solution

In this section, we construct an approximate solution of the Lax—Friedrichs
difference scheme type for the initial-boundary value problem (1), (2) in a
standard way (cf. [3],[4],[14].)

Let the initial data u(0,z) be a bounded measurable function and
[[w(0, [z < M.

We suppose that the inverse of the z-mesh length Az and the ratio of the
period T" and the t-mesh length are even integers 2L and 2N,

9LAz =1, 2NAt=T.

It is necessary that the ratio of Ax and ¢t-mesh length At is a sufficiently large
constant for the CFL condition. We take the value such that

Az
— > A= !
At~ A |u|§r]I\1/IE-L&->E./’G0 A (17)

where T is time-period of function g, and Gy is the maximum value of |g|

Go= max |g(t, )|

Let Ej” be an interval and J,, an index set such that
EY = ((j—DAz,(j+1)Az] (j € Jo,n=0,1,2,...),

J
{...,=5,—-3,-1,1,3,5,...} if nis even,
{...,—4,-2,0,2,4,...} if n is odd,

Ip =

and we denote R(t,x;u;, u,) as the solution of the Riemann problem (16).
The approximation of the initial value u®(0,z) is defined as a step value

function

1
A 0
u=(0,7) = u; = m(E)

J

/ w(0,z)dz  on EY (j € Jy),
E9

J



TIME-PERIODIC SOLUTIONS 9

where (0, x) is extended to the function on R as the z-periodic function. The
value u9 has the periodicity of u9,,, = uJ. We define u®(t,z) as the solution

of the Riemann problem for the step initial data u*(0, x)
UA(tv .%’) = R(t> T — ]A.’E, U?—lv u?—i—l)

in each small regions (0, At) x E]l, j € Ji. The wave must arrive at the top of
the region by the CFL condition (17). On the line t = At, we define u”(At, x)

as the mean value

1 .
u®(At, x) = uy = m(ED) /Ej1 u® (At — 0, z)dx on E; (j€.J),

and construct u”(t,z) by solutions of Riemann problems in (At,2At) x R

similarly in (0, At) x R,
ut(t,z) = R(t — At,x —jAz, ui_y,utyy) in (AL 2AE) X EF (€ J).

On t = 2At, we set u”(2At, z) as the sum of the mean value and the term for

the outer force

u®(2At, z) = u = ug ; + 2Atg;

1 A 1 24t
At — 0. 2)d 7/ dt t 2)d
m(Ef) /E?u ( 0,z) x+m(E]2) ; E?g( ,x)dx

on B (j € Ja).

The last calculation is called the fractional step method.
For (2nAt,(2n + 2)At] x R (n = 1,2,...,N — 1) we define the approxi-
mation u®(t,x) by the similar way. The following lemma shows that above

construction can be continued ton = N — 1.

LEMMA 2 If constants u; and u, satisfy
jw| <A, u,| < A,

then the solution of the Riemann problem (16) u(t,x) satisfies |u(t, x)| < A.
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10

By Lemma 2, it is easy to show that |[u®(t,z)] < M + TG, and waves

appeared in the definition of u®(¢,2) cannot access in (0,7) x R from the

CFL condition (17) because speeds of these waves do not over the maximum

value of |f(u)].

4 Decay estimates

In this section, we obtain the estimate for the approximation
structed in the last section by the similar way to Tadmor ([13])

step Lax—Friedrichs difference approximation.

u®(t, ) con-

for fractional

The step values u} = u(nAt, jAz) are able to be described as forms of the

Lax—Friedrichs difference scheme

2n 2n
n Ujq + U5 At n n .
et = WREWR AL ey (e,
2n+1 2n+1
" (i S Vil At o, n
™t = S - (T = ) + 20
(j € Jont2)
(n=0,1,2,...),
where f7 = f(u}) and
1 (n+1)Atd (j+1) Az ;
n_ / / t, x)da.
9 = 4AtAx /(n_1)m (—1)Az glt, x)dv

Let v}l be the z-backward difference of u?

ur —
n_ =2
Ui 2Ax
Then,
2n+1 2n+1
L2+l — U - jf;
J 2Ax
ut, — ud" At
_ j+1 j—3 2n 2n 2n
T TR qaeph A
2n 2n
Vit1 + UVi—1 At 2n 2n 2n
! 5 — - QAxf,<uj—1)<vj+1 - Uj—l)

n+1),

2n+1

9; (18)
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1
arf @) [0 -0, - 00, — a))ds

on 2 [ (22 2 2
3 [0 0 00— )0

< SRR B g - o) - s R
Similarly,
CAMRS “?ﬁ“;“f‘"fl —Qi;f’(u?"#)@iiﬁ— 1
—At {5<U?ﬁ1)2 ; (") 2G1} :

where (7 is the value in (15). Let N" = max; v7. N" is non-negative because
the summation
n
>y
jEJn,0<j<2L
equals zero from the space periodicity of uj. A function

h(x):ém—@ 2

5 5T (A>0)

increases for © < A/(2Atd). Hence, if

1 At
n o~ (1 _ ==
N _2At(5(1 Ax )

then
N2n+1 = max Uj?n-l—l S N2n . At5<N2n)2
J

Similarly,

1 At
i+l 1 _ 2
- 2At5( Ax )

yields

]\/'2”"'2 = max U?n-i-l S N2n — At{5(N2n)2 — 2G1}.

J
The simple estimate for N™

. uj —uj_, < M+ TG,
i J 20x T Az
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shows that if

A
25(M + TGo) + A < If’ (19)
then
N2n+2 _ N2n )
- < . 27’1, 2
2Nt <G Q(N ) (20)

for n < N — 1 since

N2n+1 < N2n _ At§<N2n)2 < NZn’
N2n+2 S N2n+1 o At5<N2n+l)2+2AtGl

< N2 — AtS(N?™)? + 2AtG,.

The solution y(t) of ordinary differential equation

y(0) = N°

tends to the value

o = \/2G1/(5 (21>

as t tends to infinity. If N > « then y(¢) is monotone decreasing convex
function, and if N° < « then y(¢) is monotone increasing concave one. In the
latter case, the tangent line of y(t) started ¢ = tq across the line y = « at

2
6(y(to) + @)
and the time is not smaller than ¢, +1/(dc). Hence, if N** < a then N?™ < «

t=to+

for n < m < N provided that

1
20 < = (22)

from the inequality (20). In the case N° > «, it is easy to show that

N < y(omA) < ot g2 (m < N). (23)

2mad At __ 1
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We consider the estimate for w2V

;" using above estimates for v}'. For the

J

summation of U?N

L
202 ) u%jv_l
j=1

L 2N-—-1 2N-1
{UQj + UQ]'_Q -

At (
2 2Azx

= QAxZ

fEN1_ gy L mtgg;v_—;}
j=1

L L
= 2Az) ugj-vfl +4AzALD gng:ll
j=1

J=1

L L
= 2Az) u%v__l? + 4AzALY gng__ll
j=1

j=1

. N L
= 20z ) uy +AATALY D grT)
=1

n=1j=1

— /01 uo(x)dx+/0Tdt/olg(ta$)d$

= U

from (3).

Next simple lemma is used to the estimate for u?N .

LEMMA 3 Let p; be real values which satisfy

p1+p2+t--+px =0,

and let
P; —Pj—1 (j:2737""K)a
4; = ,
p—px  (J=1).
Then
K
max |p;| < > lgl < 2K maxg;.
=1

The proof is omitted.
Let K = L, p; = u3) , — 4 in Lemma 3, then ¢; = 205 ; Az and

4
|u§N — u] < 2L max 2Aa;vj2-N = 4LAzN?N < 2a + 6T70¢
j exl —1

from (23).
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PROPOSITION 4 Under assumptions (19), (22)

%"
2N —
|Uj — U‘ S 20( + ea(STi'

- (24

Proposition 4 give the time-periodic solution of the difference approxima-
tion.

Let A be sufficiently large number such that

4o
A>2a—|—7€a5T_1,

and let M = |u] + A. We take mesh lengths Az and At to satisfy (19), (22)

and

Ar

Ay < Mo =2{20(M +TGo) + A} (25)

for the estimation of the entropy (§5). Let Dy be a set
Dy = DL(E, A)
L
= {(u1,u2,...,ur) €RY Y u;=u, max|u; —ul <A}
=1
If we take (uf,us,...,u5; ;) from Dy, set u) periodically for any j € Jy, then

we can construct the approximation u®(t, z) by the way in §3. Obviously Dy,

is a closed convex set and the range of the mapping

0,0 0 2N 2N 2N
Dr > (ugsug, - ougp—q) = (uy uz, . usp )
is contained in Dy, from Proposition 4. Hence, we obtain the fixed point

(a(l)v aga cee 7ﬂgL—1) (26)

of the mapping from Brouwer’s fixed point theorem in Dj. Of course, the

fixed point depends on Azx.
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5 Compactness of entropy

In this section, we show the compactness of
{U@W?(t,2)) + Flu®(t,2))e;  (ud,ul,...,ud, ;) € Dy, L > Lo}

in H.2((0,T) x (0,1)) for any smooth entropy pair (U(u), F(u)), where Ly is
sufficiently large integer for (19) and (22).

For simplify, we set u37 (z) as the function consists of the step values u2" ¢
ud(n) =y (v € B
and use notations

u’y () = u(nAt 40, x), u” (x) = u(nAt — 0, z), fr=fh),

J J

and so on.

We consider for a particular entropy pairs (U*, F*) defined by

U= F*:/Ouuf’(u):uf—/ouf.

Since the approximation u® (t, z) satisfies the equation (12) almost everywhere,

0 = /Tdt/l{U*(uA(t,x))t—i—F*(uA(t,x))x}dx

(2n—1)At 2nAt 1
(/ dt + dt)/ (UF + F¥)dz
nel 2n—2)At (2n—1)At 0

N
2n lAt 0 *x12n. —
= Z/ ( 2n 2;At+0+ (U ]?2§1)&t+0) dx
-1
T

I
=2

3

+

0 ~ [P
shock
(2n—1)At—0 Yo A
= LAWﬂ%med+§:AKﬂ%&£m+E*
n=1

=1

1
+ U*(T+O,:1:)dm—/ U*(+0, x)dx

_ re 1)At—0 * 2n *\2n
= 2% f U Mw+22/ () = )3 Y

=1 5=0 n=1j=1

ST T
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where

ooy

n=1j=1"F3
1 1
o= /U*(T+O,x)dx—/ U* (40, 2)dz,
0 0
T
o= [X (el - ),
0

> shock is summation for all the shock waves arise in [0, 7] x [0,1], [U*] and

[F*] is the difference across the wave, and o is the speed of it. Because of

1
UV =1 o2 — / W2 ze B2,
( ) ) + m(E22]n—1) E;J”_l — ( 27 )
1
and  u", = 7/ u?dx (x € E3" ),
O g Jegy N

we have

13 1 1 1
- Z/ w2t — 2P+ Z/ W — " Pde + XF = —T* — J*.
2:=J)o 2=Jo ’

The boundedness of u (¢, x)

[u?(t, )| < M + TGy

shows that
N L
* *\2n *\ 21
RAREED 95 SU I (G AR U T
n=1j=1 E2j—1
N L 2n 2n
_ 2n 2n u0,+ + u+
_ ;;/E (ufr, — i) = da
= i ZL: / oAf |1t F U
n=1j=1 E;?—l R 2
< TGo(M + TGy),
1 1
i < /0 |U*(T+O,x)|dx+/0 U (40, )| da
< (M +TGy)%
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Hence we obtain the inequality

1 al ! 2n—1 2n—1|2 1 al ! 2n 2n |2
52/0|u_ —uf |d:p+52/0|u_ —uy"y [*dx
n=1 n=1

. /T S (o[U] - [F)dt < C(M,T,Gy), (27)

% shock
where C'(M, T, Gy) is a constant depends on M, T and G.
Let ¢(t,x) be a function in C§°((0,7") x (0,1)). The integral

//[O,T}X[O,l]{U(uA>¢t " F<UA)¢$}dtdx (28>

is divided into four parts

I U)o+ F)o,)dide
[0,7]x[0,1]

- //[O,T}x[o,l}{(U(b)t + (F¢)x}dtdm
= X(¢) + L1(¢) + La(¢) + Ls(o),

3
I
—
<.
Il
Jat
V)
S
|
—

S
Il
—

h
I
S
Il
()=
o\H
SN
3
+ 3
|
QU
\_R

&
S
I
M=
——

3
Il
—

L—1
S [ (60— U - U
j=1 2j
Aw 2 1 2 1 ! 2 1 2 1
+ /0 SU1 — U2~1ydg + /1 eumt Uz )da:}

)

2
n=1 j:l EZ;;I

(¢ — ¢35 (U2 = U7y ),



TIME-PERIODIC SOLUTIONS 18

and ¢7 = ¢(nAt, jAz). We estimate L;(g)

|L1(¢)]

|La(0)]

| Ls(0)]

and X(¢)

<

IN

IN

IN

IN

IN

Iollco max |U"(u)|

|u|<M+TGo
N 1 N-1 1
X (Z/ W2t — T P de 4+ ) / |u®" —u§"+\2dx>
n=1 0 n=1 0 7
O(UNaMa T7 GO)H¢||COa

[len, max (V') Y

lug", — uil|dx

u|<M+TGo o = B
N L
! AAtAz| g2}
[olr, s, 10'(0)] 35 3 480l

C(U/7M7T7 GO)H(bHCO?

I9llca(Az)”
N o1 N-1 .1

X (Z/O Uzt — U de + Z/O U2 — U&’jr|dg:>
n=1 n=1

|ollca(Az)®  max |U'(u)|]vV2N -1

|[u|<M+TGo
N 1 N-1 .1 1/2
X (Z/ W2t — T P dr 4+ Y / lu?" — u%ﬁr\de)
n=1 0 n=1 0

C(U', M, T, Go)yTAx/ At ¢llca(Az)™/2
C(U', M, T, Go, )|l (Az) "~

Z(@) < [glleo, max |U"(u)[E" < C(U", M, T, Gy)|[lco

lu|<M+TGy

by the similar way in [3] (I). Hence the integral (28) is the sum of two linear

operators T1(¢) and Ty(¢) which satisfy

T1(0)| < Clldllco,  |Ta(d)] < Clldllco(Ax)™17,

where the constant C' depends on M, T, GGy, maximum value of U' and U”,

and Ag. This shows the following proposition by the argument in [3] (I).

PROPOSITION 5 For any smooth entropy pair (U, F), the set

{U@W?(t,2)) + Flu™(t,2))e; (8,0, ..., ud, ) € Dy, L > Lo}
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is relatively compact in Hy, ((0,T) x (0,1)).

Proposition 5 and Tartar’s theorem ([15]) yields the existence of subse-

quence which converges almost everywhere. It also valid for the initial data

(@?,ﬂg,.. u2L 1) (§4)

6 Convergence to an entropy solution

In the last section, we saw the existence of a convergent sequence of approxi-
mate. In this section, we show that the limit is a weak solution and satisfies
the entropy condition in this section.

To prove the limit is a weak solution, it is sufficient that the integral

I = //[OT]X[O”( O+ [0 + g0) dtdx+/ (4+0,2)¢(0, x)dx
—/ (T +0,2)p(T, x)dx
tends to zero as Az tends to zero for any ¢ € C3([0,T] x [0,1]) such that
#(t,0) = ¢(t,1) (0 < t < T), because the data (@?,u3,...,u5; ;) is uni-
formly bounded and have a subsequence which converges to a function u(z)
of L>(0,1).

By the similar calculation in §5, it follows

1=l gqﬁdtdﬂz A|Gnona g, +Z¢u A0y
[0,7]x[0,1]

- é (Z o5~ 1/ ul)dx + ¢ l/oAx[uA]dx
A 1/ dac) + ZZ%] 1/E% u2”—u(2)"+)dx

n=1j=1

+Z{Z/2M 2+ [ s
+ [ - o)
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N L
XY [ @) - e

n=1j=1""25-1

N o1
dtd / 2n . .2n d
+//[O,T]><[0,1]g¢ “; ; P(ug, — ui)dw

= L+
since o[u®] — [f2] = 0 for shocks from the Rankine-Hugoniot relation and
2=l — 21 where
N L—-1 Ax
L= SN [ (o= utlde+ [ (6 - o utde
n=1 | j=1 E2j 0
1
+ [ =
1-Azx
N
D0 Dl IR CET (i
n=1j=1"53"1

N 1
I - // dtd / 2n __ ,2n d ‘
i [0,7]x[0,1] godidr + n; 0 P(up", — ui")dw

I, tends to zero because

N 1 N 1
L] < o1 Az w2 Y de + u? — w2 |dx
0 + ) 0,+
n=1 n=1
< pllerAxvV2N
N 1 N 1 1/2
(S et = 3 [ - )
n=1 n=1
S O(||¢Hclu M7 T7 GO: AQ) v Az.

For I,, we obtain

N L
I, — // dtdz — / A2 L
’ ooy S0 T 22 [, AR Od

n=1j=1
N L 2nAt ~on
= 712:1]2::1 (2n—2)At dt ES?,l g<t7 $){¢(t, x) - ¢2j—1}dx7
where
" 1
of m(ED) /;1 d(nAt, x)dx.
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The function ¢ — ¢2j ; tends to zero because

IA

-3l < gx [ 10(62) — 620ty ldy < 6207 + A)

< [gllenAn(2 + 1/A).
Therefore we obtain
|]| S C(”ngCla M7 Ta GO, AQ) \ At

Lastly, we show that the limit satisfies the entropy condition (13). Let
(U, F) be a smooth entropy pair and U be a convex. The weak form of the

entropy condition is the inequality
/ [ U6+ Fo, + U'ga)dtdz = 0
for any ¢ € C''((0,00) x R). It is sufficient for the proof to show that
I= / dt / By + Py + U (u)giby ) > o(1)
for ¢p € C([0,T] x [0, 1]) such that
=0, ¢0,z)=9(Tx) (ze0,1]), »(t0)=14E1) (te]0,T]).

For convex entropy U we can see

(cf. [3]). Hence,
T = ! t t— /
I = 3 | el +Z ) Wi + [ U'gudia
+/01(Uw)(T+0,w)dx—/0 (U)(+0, z)dx
T
+/0 3 ¢(U[U]—[F])dt+//U’g¢dtdx
shock

Ly +Ly+ Ly + // U' gipdtdx

v



TIME-PERIODIC SOLUTIONS 22

since u®(T + 0, z) = u”(+0, z), where

N Ax
T o 2n—1 2n—1
I - n§:jl{§j¢ / [U)dz + 2 /0 U)dz

1
32_1 /1—A;p } + Z Z@% 1/E2" U2n - Ug,’i)dw,

n=1j=1

_|_

/ W(UZ, — U)da,

{Z/Emw V0N + [ — g
(- wéz*)mdx}

MZ [ MZ

1

n

+
:\\1

—Ax

N L
Yy /E (0= VB~ U )da,

n=1j=1

By U” > 0 and 3" " = 377" Ly > 0. It follows by the similar way in §5
that

|E3] < |l Az max |U'|

N o1
X (Z/o e 1|d:v+2/ |u?" — ul |dx>
n=1

C(|]ler, U, M, T, Go, A2)V A.
Hence we have
I> // U'gdtdr + Ly + O(V Az). (29)
[0,T]%[0,1]

From Taylor’s expansion theorem

L, = Z/ VAL 2) (U (W27 (U2, — w2 }da
+ Z/ V(2nAt, z) (ugly, — ui)’de
X /0 (1= O)U" (12" + 6(u2", — u2"))df

- ZZQM 33” U (u3 Upj_ 1)/E »(2nAt, x)dx.

2n
n=1j=1 2j-1

v
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First two terms of the right hand side of (29) become

v

v

where 3"

/ / U gibdtda + Lo
[0 T] % [0,1]

ZZ [Ny R CLO- R
S [ U - e )gds

n=1j=17(2n—=2)At B3 |

+ Z Z/ dt +HU" - (u2j 1)}¢2] 19dz + Ly

2
o1 =1/ (@n-2)At B2

N L
Z Z4AL‘A$(U’1/1)2? 193}1 11
n= 1j 1

At

LYy fo ot U= U )eds

2
= 1; 1 —2)At B3,

- Z Z 2N MU (U2 ) /E @At z)dr + O(Ax)

n= 1] 1 2j—1

At
Syl fo Ly, V= U0 )b + O(A)
n=1j=1 1
N 2nAt , , 9
1 gax T
Z o dt {U U'(u") 2 gdx + O(Ax)

N ronAt 1
Z/ dt/o (U = U'(u2,) 12 gdz + O(Ax),

2n—2)At

is a step value function defined by

( ) = 1/)23 1 (CCEES?A)

Remember the following lemma proved in [8].

23

LEMMA 6 Letu(t,x) be the solution of the Riemann problem (16), u be the

average of u(At, )

1 Az
u(t,z) = R(t, x;up, u,), u = —/A u(At, z)dx

2Ax J-

and the mazimum wave speed A = max{|f'(w)|, |f'(u,)|} satisfy A < Ax/At.

Then

Mla—ultolde<C [ Ja—u(Ato)de  (0<t< At
[ li—uta)de <O [ ju-u@ta)de (0<t< A,
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where C' s a positive constant
C = (1—-AAt/Az)™?

For the approximation u®(¢, z) the constant C' is

-1
- A S S
26(M + TGy) + A 20(M + TGy)

from (19). By Lemma 6 we estimate the rest term

2nAt d 1 , , d
t U — U
s X (2", ) 2 gda
N 2nAt
< X[ =il
n=1 n
B3 [an [r - 0eglas
2n—2)At +
2n 1 d U/ 2 1 d
t/ n—
Z/%mm | U (3l gld
< C(M,5,M,T,Gy, ||| co, max |U"|) At
XZ/ u?" u |+]u2" L 2" o Ju? ug’ﬂr )dx
< CVA=z.

Therefore, we obtain I > —CvAxz.
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