2 Ϣ³À­

¤Þ¤º¡¢Ï¢Â³À­¤ÎÄêµÁ¤ò³Îǧ¤¹¤ë¡£


ÄêµÁ 1

$x=a$ ¤Î¶á¤¯ ($x=a$ ¤â´Þ¤à) ¤ÇÄêµÁ¤µ¤ì¤Æ¤¤¤ë´Ø¿ô $f(x)$ ¤ËÂФ·¤Æ¡¢ ¤½¤ì¤¬ $x=a$ ¤ÇϢ³¤Ç¤¢¤ë¤È¤Ï

\begin{displaymath}
\lim_{x\rightarrow a}f(x)
\end{displaymath} (1)

¤¬Â¸ºß¤·¡¢¤½¤ì¤¬ $f(a)$ ¤È°ìÃפ¹¤ë¤³¤È¤ò¸À¤¦¡£


¶Ë¸Â (1) ¤Î¸ºß¤Ï¡¢ ¤â¤Á¤í¤óº¸±¦¤Î¶Ë¸Â¤¬Â¸ºß¤·¡¢¤«¤Ä°ìÃפ¹¤ë¤³¤È¤Ê¤Î¤Ç¡¢¤³¤ÎϢ³À­¤Ï

\begin{displaymath}
\lim_{x\rightarrow a+0}f(x) = \lim_{x\rightarrow a-0}f(x) = f(a)
\end{displaymath}

¤Î¤è¤¦¤Ë½ñ¤¯¤³¤È¤â¤Ç¤­¤ë¤·¡¢ ¸·Ì©¤Ë¤Ï¤¤¤ï¤æ¤ë $\varepsilon$-$\delta$ ÏÀË¡¤Ë¤è¤Ã¤ÆÄêµÁ¤µ¤ì¤ë ([1])¡£

Ϣ³À­¤Ï¸µ¡¹¤Ï³ÆÅÀ¤ÇÄêµÁ¤µ¤ì¤ëÀ­¼Á¤Ç¤¢¤ë¤¬¡¢ ¶è´Ö $I$ ¾å¤Î¤¹¤Ù¤Æ¤ÎÅÀ¤ÇϢ³¤Ç¤¢¤ì¤Ð¡¢¤½¤Î´Ø¿ô¤Ï $I$ ¾å¤ÇϢ³¤Ç¤¢¤ë¡¢ ¤È¤â¸À¤¦¡£¤Ê¤ª¡¢¤½¤Î¶è´Ö¤¬ÊĶè´Ö $I=[a,b]=\{x; a\leq x\leq b\}$ ¤Ç¤¢¤ë ¾ì¹ç¤Ï¡¢¤½¤ÎüÅÀ $x=a$, $x=b$ ¤Ç¤ÎϢ³À­¤Ï¡¢ÊÒ¦Ϣ³À­¡¢¤¹¤Ê¤ï¤Á

\begin{displaymath}
\lim_{x\rightarrow a+0}f(x)=f(a),\hspace{1zw}\lim_{x\rightarrow b-0}f(x)=f(b)
\end{displaymath}

¤ÇÃÖ¤­ÊѤ¨¤ë¤³¤È¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£

Ä̾ï²æ¡¹¤ÏϢ³¤Ê´Ø¿ô¤ò°·¤¦¤³¤È¤¬Â¿¤¯¡¢´Ø¿ô¤ËÉÔϢ³¤ÊÅÀ¤¬¤¢¤ë¾ì¹ç¤Ç¤â ¤½¤Î¤è¤¦¤ÊÅÀ¤Ï¤½¤ì¤Û¤É¿¤¯¤Ê¤¤¤Î¤¬ÉáÄ̤Ǥ¢¤ë¡£

Î㤨¤Ð¡¢¥¬¥¦¥¹´Ø¿ô $[x]$ ¤Ï°Ê²¼¤Î¤è¤¦¤ËÄêµÁ¤µ¤ì¤ë ÉÔϢ³¤ÊÅÀ¤ò»ý¤Ä´Ø¿ô¤Ç¤¢¤ë¡£

\begin{displaymath}[x]=\mbox{$x$ °Ê²¼¤ÎºÇÂç¤ÎÀ°¿ô}\end{displaymath} (2)

¿Þ 1: ¥¬¥¦¥¹´Ø¿ô¤Î¥°¥é¥Õ
\includegraphics[height=0.2\textheight]{gauss1.eps}
¤³¤Î¥¬¥¦¥¹´Ø¿ô¤Ï¡¢À°¿ô¤Î $x$ ¤ËÂФ·¤Æ
\begin{displaymath}
\lim_{y\rightarrow x+0}[x]=x,\hspace{1zw}\lim_{y\rightarrow x-0}[x]=x-1
\end{displaymath}

¤È¤Ê¤ë¤Î¤Ç¤½¤³¤ÇÉÔϢ³¤È¤Ê¤ë´Ø¿ô¤Ç¤¢¤ë¤¬¡¢ ¤Û¤È¤ó¤É¤ÎÅÀ (À°¿ô°Ê³°¤Î¤¹¤Ù¤Æ¤Î $x$) ¤Ç¤ÏϢ³¤Ç¤¢¤ë¡£

¤È¤³¤í¤¬¡¢Ãæ¤Ë¤Ï¤¹¤Ù¤Æ¤ÎÅÀ¤ÇϢ³¤Ç¤Ê¤¤¤è¤¦¤Ê´Ø¿ô¤â¸ºß¤¹¤ë (ºî¤ë¤³¤È¤¬¤Ç¤­¤ë)¡£

\begin{displaymath}
f_D(x)=\left\{\begin{array}{ll}
0 & (\mbox{$x$ ¤¬ÌµÍý¿ô¤Î¤È¤­})\\
1 & (\mbox{$x$ ¤¬Í­Íý¿ô¤Î¤È¤­})
\end{array}\right.\end{displaymath} (3)

¿Þ 2: ¥Ç¥£¥ê¥¯¥ì´Ø¿ô $f_D(x)$ ¤Î¥°¥é¥Õ
\includegraphics[height=0.2\textheight]{dirichlet1.eps}
¤³¤ì¤Ï¥Ç¥£¥ê¥¯¥ì´Ø¿ô¤È¸Æ¤Ð¤ì¤ë¤â¤Î¤ÇÀµ³Î¤Ë¥°¥é¥Õ¤Ëɽ¤¹¤³¤È¤Ï¤Ç¤­¤Ê¤¤¤¬¡¢ Í­Íý¿ô¡¢ÌµÍý¿ô¤Ï¤É¤ó¤Ê¼Â¿ô $x$ ¤Î¶á¤¯¤Ë¤â̵¿ô¤Ë¸ºß¤·¡¢ ¤è¤Ã¤Æ¤É¤Î $x$ ¤Î¶á¤¯¤Ç¤â´Ø¿ô¤Ï 0, 1 ¤ÎÃͤò̵¸Â¤Ë·«¤êÊÖ¤·¼è¤ë¤Î¤Ç¡¢ 0 ¤« 1 ¤Î¤É¤Á¤é¤«°ìÊý¤ÎÃÍ¤Ë $x$ ¤Î¼þ¤ê¤«¤é¶á¤Å¤¯¤³¤È¤Ï¤Ê¤¯¡¢ ¤è¤Ã¤Æ¤¹¤Ù¤Æ¤Î $x$ ¤ÇÉÔϢ³¤Ê´Ø¿ô¤Ç¤¢¤ë¡£

¤³¤ì¤ò¾¯¤·ºî¤ê¤«¤¨¤¿¼¡¤Î¤è¤¦¤Ê´Ø¿ô¤â¤¢¤ë¡£

\begin{displaymath}
f_1(x)=\left\{\begin{array}{ll}
0 & (\mbox{$x$ ¤¬ÌµÍý¿ô¤Î...
...½¸½¤¬ $\displaystyle \frac{q}{p}$ ¤Î¤È¤­})
\end{array}\right.\end{displaymath} (4)

¤³¤³¤Ç¡¢Í­Íý¿ô $x$ ¤Î´ûÌóɽ¸½ $q/p$ ¤È¤Ï¡¢ $p$, $q$ ¤¬¸øÌó¿ô¤ò»ý¤¿¤Ê¤¤À°¿ô¤Ç¡¢$p>0$ ¤Ç¤¢¤ë¤³¤È¤È¤¹¤ë¡£ ¤¹¤Ù¤Æ¤ÎÍ­Íý¿ô¤Ï¤³¤Î¤è¤¦¤Ê·Á¤Îʬ¿ô¤Ë°ì°Õ¤Ëɽ¼¨¤µ¤ì¤ë¤Î¤Ç¡¢ $f_1(x)$ ¤Ï¤³¤ì¤Ë¤è¤ê¤Á¤ã¤ó¤ÈÄêµÁ¤µ¤ì¤ë (¥°¥é¥Õ¤Ï½ñ¤±¤Ê¤¤)¡£

¤³¤Î´Ø¿ô $f_1(x)$ ¤Ï¡¢$a$ ¤¬Í­Íý¿ô¤Ê¤é¤Ð $a$ ¤ÇÉÔϢ³¡¢ $a$ ¤¬ÌµÍý¿ô¤Ê¤é¤Ð $a$ ¤ÇϢ³¤È¤Ê¤Ã¤Æ¤¤¤ë¡£ $a$ ¤¬Í­Íý¿ô¤Î¾ì¹ç¤Ï¡¢¤Û¤Ü $f_D(x)$ ¤ÈƱ¤¸Íýͳ¤ÇÉÔϢ³¤È¤Ê¤ë¤¬¡¢ $a$ ¤¬ÌµÍý¿ô¤Î¾ì¹ç¤Ï¡¢$x$ ¤¬ $a$ ¤Ë¶á¤Å¤¯¤È¤­¡¢ $x$ ¤â̵Íý¿ô¤Ê¤é¤Ð $f_1(x)=f_1(a)=0$ ¤Ê¤Î¤Ç¡¢´Ø¿ô¤ÎÃͤ϶ᤤ (Ʊ¤¸)¡£ $x$ ¤¬Í­Íý¿ô¤Ê¤é¤Ð¡¢¤½¤ÎÍ­Íý¿ô $x=q/p$ ¤¬ÌµÍý¿ô¤Ç¤¢¤ë $a$ ¤Ë¶á¤Å¤¯¤¿¤á¤Ë¤Ï¡¢ ʬÊì¤Î $p$ (¤â¤Á¤í¤óʬ»Ò¤Î $q$ ¤ÎÀäÂÐÃͤâ) ¤Ï ¤À¤ó¤À¤óÂ礭¤¯¤Ê¤é¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¡£ ¤½¤·¤Æ $p$ ¤¬Â礭¤¯¤Ê¤ì¤Ð¡¢$f_1(x)=1/p$ ¤Ï 0 ($=f_1(a)$) ¤Ë¶á¤Å¤¯¤³¤È¤Ë¤Ê¤ë¡£ ¤è¤Ã¤Æ¡¢¤¤¤º¤ì¤Ë¤»¤è¡¢$a$ ¤¬ÌµÍý¿ô¤Ê¤é¤Ð

\begin{displaymath}
\lim_{x\rightarrow a}f_1(x)=f_1(a) = 0
\end{displaymath}

¤¬¸À¤¨¤ë¤³¤È¤Ë¤Ê¤ë¤Î¤Ç¤¢¤ë¡£

¤Ê¤ª¡¢¥Ç¥£¥ê¥¯¥ì´Ø¿ô $f_D(x)$ ¤È $x$ ¤ÎÀÑ $f_2(x)=xf_D(x)$ ¤ò¹Í¤¨¤ë¤È¡¢

¿Þ 3: $f_2(x)=xf_D(x)$ ¤Î¥°¥é¥Õ
\includegraphics[height=0.2\textheight]{dirichlet2.eps}
¤³¤ì¤Ï $x\neq 0$ ¤Î¤È¤­¤Ï¤¢¤¤¤«¤ï¤é¤º $x$ ¤ÇÉÔϢ³¤Ç¤¢¤ë¤¬¡¢ $x=0$ ¤Ç¤ÏϢ³¤È¤Ê¤ë (¥°¥é¥Õ¤è¤êÌÀ¤é¤«¤Ç¤¢¤í¤¦¤¬¡¢ ¾Ü¤·¤¤¾ÚÌÀ¤Ï 5 Àá¤ò¸«¤ì¤Ð¤ï¤«¤ë)¡£

ÃÝÌîÌм£¡÷¿·³ã¹©²ÊÂç³Ø
2008ǯ8·î26Æü