3
J.Smoller.
Shock waves and reaction-diffusion equations. (2nd edition),
Springer, 1991.
4
C.M.Dafermous.
Hyperbolic conservation laws in continuum physics.
Springer, 2000.
5
D.Serre.
Systems of conservation laws, 1, 2. Cambridge, 1999.
6
A.Bressan.
Hyperbolic systems of conservation laws. Oxford, 2000.
7
$B5H@nFX(B,
$BHs@~7AJ]B8B'7OF~Lg(B - $BJ]B8B'$NM}O@(B -,
$B>eCRBg3X?t3X9V5fO?(B No.21 ($B>eCRBg3X?t3X65<<(B), 1985.
8
L.Hrmander.
Lectures on nonlinear hyperbolic differential equations. Springer, 1997.
9
R.Courant and K.O.Friedrichs.
Supersonic flow and shock waves. Springer, 1991
(original edition: Interscience, 1948)
$BBeI=E*$J=t7k2L(B
$BC1FHJ]B8B'(B
10
O.A.Oleinik.
Discontinuous solutions of non-linear differential equations.
Uspekhi Mat.Nauk 12 (1957), 3-73.
Glimm $B$N:9J,(B
11
J.Glimm.
Solution in the large for nonlinear hyperbolic systems of equations.
Comm.Pure Appl.Math. 18 (1965), 697-715.
12
T.Nishida.
Global solutions for an initial boundary value problem of a
quasilinear hyperbolic system.
Proc.Japan Acad. 44 (1968), 642-646.
$BJd40B,EYK!(B
13
L.Tartar.
Compensated compactness and applications to partial differential
equations. 136-211, Nonlinear analysis and mechanics:
Heriot-Watt Symposium, Vol.4, ed. R.J.Knops, Research Notes in
Mathematics 39, Pitman, London 1979.
14
R.J.DiPerna.
Convergence of approximate solutions to conservation laws.
Arch. Rational Mech. Anal. 82 (1983), 27-70.
15
R.J.DiPerna.
Convergence of viscosity method for isentropic gas dynamics.
Comm. Math. Phys. 91 (1983), 1-30.
$BGHLLDI@WK!(B
16
R.J.DiPerna.
Global existence of solutions to nonlinear hyperbolic systems of
conservation laws. J. Differential Equations 20 (1976),
187-212.
17
A.Bressan.
Global solutions of systems of conservation laws by wave-front tracking.
J. Math. Anal. Appl. 170 (1992), 414-432.
18
N.H.Risebro.
A front-tracking alternative to the random choice method.
Proc.Amer.Math.Soc. 117 (1993), 1125-1139.
$BF0NO3X6a;w(B
19
P.L.Lions, B.Perthame, and E.Tadmor.
Kinetic formulation of the isentropic gas dynamics and p-systems.
Comm.Math.Phys. 163 (1994), 415-431.
20
P.L.Lions, B.Perthame, and P.E.Souganidis.
Existence and stability of entropy solutions for the hyperbolic
system of isentropic gas dynamics in Eulerian and Lagrangian
coordinates.
Comm.Pure Appl.Math. 49 (1996), 599-638.
$BJd40B,EYK!$N$?$a$N;29M;qNA(B
21
L.C.Evans.
Weak convergence methods for nonlinear partial differential equations.
CBMS regional conference ser. in Math. 74, AMS, 1990.
22
G.-Q.Chen.
The compensated compactness method and the system of isentropic gas
dynamics.
Math.Sci.Res.Institute 00527-91, Berkeley. 1990.
23
K.N.Chueh, C.C.Conley and J.A.Smoller.
Positively invariant regions for systems of nonlinear diffusion
equations. Indiana Univ. Math. J. 26(1977), 373-392.
24
G.-Q.Chen and Y.G.Lu.
The study on application way of the compensated compactness theory.
Chinese Sci.Bull. 34 (1989) 15-19.
25
$BC]LnLP<#(B,
$B5$BN$N1?F0J}Dx<0$N=i4|CM6-3&CMLdBj$K$D$$$F(B,
$B?73cBg3XBg3X1!=$;NO@J8(B, (1990), 1-65.
$BJd40B,EYK!$K4X$9$kO@J8(B
$B5$BN$N%P%m%H%m%T%C%/%b%G%k(B
26
X.Ding, G.-Q.Chen, and P.Luo.
Convergence of the Lax-Friedrichs scheme for isentropic gas
dynamics (I)-(I I).
Acta Mathematica Scientia 5(1985),
415-432, 433-472 (Chinese edition: 7(1987), 467-481;
8(1988), 61-94).
27
G.-Q.Chen.
Convergence of the Lax-Friedrichs scheme for isentropic gas
dynamics (I I I). Acta Mathematica Scientia 6(1986),
75-120 (Chinese edition: 8(1988), 101-134).
28
X.Ding, G.-Q.Chen and P.Luo.
A supplement to the papers 'Convergence of the Lax-Friedrichs
scheme for isentropic gas dynamics (I I)-(I I I)'.
Acta Mathematica Scientia 9(1989), 43-44.
29
X.Ding, G.-Q.Chen and P.Luo.
Convergence of the fractional step Lax-Friedrichs scheme and Godunov
scheme for the isentropic system of gas dynamics.
Comm. Math. Phys. 121(1989), 63-84.
30
T.Makino.
Weak solutions to the compressible Euler equation with an asymptotic
gamma-law. (2000), 1-42.
31
G.-Q.Chen and P.G.LeFloch.
Compressible Euler equations with general pressure law.
Arch.Rational Mech.Anal. 153 (2000), 221-259.
$BJd40B,EYK!(B
32
M.E.Schonbek.
Convergence of solutions to nonlinear dispersive equations.
Comm. Partial Differential Equations 7 (1982), 959-1000.
33
J.Shearer.
Global existence and compactness in for the quasi-linear
wave equation.
Comm. Partial Differential Equations 19(1994), 1829-1877.
34
P.Lin.
Young measures and an application of compensated compactness
to one-dimensional nonlinear elastodynamics.
Trans. Amer. Math. Soc. 329 (1992), 377-413.
35
M.Kruk.
Explicit characterization of -Young measures.
J. Math. Anal. Appl. 198 (1996), 830-843.
36
Y.Zhou.
An theorem for compensated compactness.
Proc. Royal Soc. Edinburgh 122A (1992), 177-189.
37
J.M.Ball.
A version of the fundamental theorem for Young measures.
Lecture Notes in Phys. 344, (1989), 207-215
38
N.Hungerbhler.
A refinement of Ball's theorem on Young measures
New York J.Math. 3 (1997), 48-53.
$B4KOB9`$r4^$`J}Dx<0(B
39
G.-Q.Chen and T.P.Liu.
Zero relaxation and dissipation limits for hyperbolic conservation laws.
Comm.Pure Appl.Math. 46 (1993), 755-781.
40
G.-Q.Chen, C.D.Levermore, and T.P.Liu.
Hyperbolic conservation laws with stiff relaxation terms and entropy.
Comm.Pure Appl.Math. 47 (1994), 787-830.
41
P.Marcati and R.Natalini.
Weak solutions to a hydrodynamic model for semiconductors
and relaxation to the drift-diffusion equation.
Arch.Rational Mech.Anal. 129 (1995), 129-145.
42
C.Lattanzio and P.Marcati.
The zero relaxation limit for the hydrodynamic Whitham traffic flow model.
J.Differential Equations 141 (1997), 150-178.
43
C.Lattanzio and P.Marcati.
The zero relaxation limit for 2x2 hyperbolic systems.
Nonlinear Anal. 38 (1999), 375-389.
$B$=$NB>(B
44
C.-H.Hsu, S.-S.Lin, and T.Makino.
On the relativistic Euler equation.
(2000), 1-61.
45
G.-Q.Chen and P.T.Kan
Hyperbolic conservation laws with Umbilic degeneracy I.
Arch.Rational Mech.Anal. 130 (1995), 231-276.
46
P.D.Serre.
La compacit par compensation pour les systmes
hyperboliques non linaires de deux quations
a une dimension d'espace.
J.Math.Pures Appl. 65 (1986), 423-468.
47
R.J.DiPerna.
Compensated compactness and general systems of conservation laws
Trans.Amer.Math.Soc. 292 (1985), 383-420.
48
G.-Q.Chen and Y.G.Lu
Convergence of the approximate solutions to isentropic gas dynamics.
Acta Mathematica Scientia 10 (1990), 39-45.
49
V.Roytburd and M.Slemrod.
Positively invariant regions for a problem in phase transitions.
Arch.Rational Mech.Anal. 93 (1986), 61-79.
50
T.Makino and S.Takeno.
Initial boundary value problem for the spherically symmetric
motion of isentropic gas.
Japan J.Indust.Appl.Math. 11 (1994), 171-183.
51
G.-Q.Chen and J.Glimm.
Global solutions to the compressible Euler equations with
geometrical structure.
Comm.Math.Phys. 180 (1996), 153-193.
Young $BB,EY!"Jd40B,EYK!$K4X$9$kK\5-;v0J30$NB>$NOCBj$J$I(B
52
E.J.Balder.
Consequences of denseness of Dirac Young measures.
J.Math.Anal.Appl. 207 (1997), 536-540.
53
S.Demoulini.
Young measure solutions for nonlinear evolutionary system of mixed type.
Ann.Inst.H.Poincare 14 (1997), 143-162.
54
H.Bellout, F.Bloom, and J.Neas.
Young measure-valued solutions for
non-Newtonian incompressible fluids.
Comm.Partial Differential Equations 19 (1994) 1763-1803.
55
G.Dolzmann, N.Hungerbhler, and S.Mller.
Non-linear elliptic systems with measure-valued right hand side.
Math.Z. 226 (1997), 545-574.
56
D.Kinderlehrer and P.Pedregal.
Characterizations of Young measures generated by gradients.
Arch.Rational Mech.Anal. 115 (1991), 329-365.
57
D.Kinderlehrer and P.Pedregal.
Weak convergence of integrands and the Young measure representation.
SIAM J.Math.Anal. 23 (1992), 1-19.
58
J.Michel and R.Robert.
Large deviations for Young measures and statistical
mechanics of infinite dimensional dynamical systems with conservation law.
Comm.Math.Phys. 159 (1994), 195-215.
59
P.Pedregal.
Nonlocal variational principles.
Nonlinear Anal. 29 (1997), 1379-1392.
60
P.Pedregal.
Parametrized measures and variational principles.
Birkhauser, 1997.
61
B.Dacorogna.
Weak continuity and weak lower semicontinuity of Non-linear functionals.
Lecture Note in Math. 922, Springer, 1982.
62
M.Sychev.
Young measure approach to characterization of behaviour of integral
functionals on weakly convergent sequences by means of their integrands.
Ann.Inst.H.Poincare 15 (1998), 755-782.
63
A.Szepessy.
An existence result for scalar conservation laws using measure
valued solutions.
Comm.Partial Differential Equations 14 (1989), 1329-1350.
64
F.Theil.
Young-measure solutions for a viscoelastically damped wave equation
with nonmonotone stress-strain relation.
Arch.Rational Mech.Anal. 144 (1998), 47-78.
WWW
65
conservation law $B$K4X$7$F(B
http://takeno.iee.niit.ac.jp/~shige/math/conser.html
66
compensated compactness $B$K4X$9$kJ88%(B
http://takeno.iee.niit.ac.jp/~shige/math/bib/bib.html
67
Conservation Laws Preprint Server (Norway)
http://www.math.ntnu.no/conservation/
68
Compactness Methods and Nonlinear Hyperbolic Conservation Laws
http://www.math.nwu.edu/~gqchen/preprints/cpmthd/