L.Tartar.
Compensated compactness and applications to partial differential
equations. 136-211, Nonlinear analysis and mechanics:
Heriot-Watt Symposium, Vol.4, ed. R.J.Knops, Research Notes in
Mathematics 39, Pitman, London 1979.
P.L.Lions, B.Perthame, and P.E.Souganidis.
Existence and stability of entropy solutions for the hyperbolic
system of isentropic gas dynamics in Eulerian and Lagrangian
coordinates.
Comm.Pure Appl.Math.49 (1996), 599-638.
K.N.Chueh, C.C.Conley and J.A.Smoller.
Positively invariant regions for systems of nonlinear diffusion
equations. Indiana Univ. Math. J.26(1977), 373-392.
G.-Q.Chen.
Convergence of the Lax-Friedrichs scheme for isentropic gas
dynamics (I I I). Acta Mathematica Scientia6(1986),
75-120 (Chinese edition: 8(1988), 101-134).
X.Ding, G.-Q.Chen and P.Luo.
A supplement to the papers 'Convergence of the Lax-Friedrichs
scheme for isentropic gas dynamics (I I)-(I I I)'.
Acta Mathematica Scientia9(1989), 43-44.
X.Ding, G.-Q.Chen and P.Luo.
Convergence of the fractional step Lax-Friedrichs scheme and Godunov
scheme for the isentropic system of gas dynamics.
Comm. Math. Phys.121(1989), 63-84.
P.Lin.
Young measures and an application of compensated compactness
to one-dimensional nonlinear elastodynamics.
Trans. Amer. Math. Soc.329 (1992), 377-413.
P.Marcati and R.Natalini.
Weak solutions to a hydrodynamic model for semiconductors
and relaxation to the drift-diffusion equation.
Arch.Rational Mech.Anal.129 (1995), 129-145.
P.D.Serre.
La compacit par compensation pour les systmes
hyperboliques non linaires de deux quations
a une dimension d'espace.
J.Math.Pures Appl.65 (1986), 423-468.
T.Makino and S.Takeno.
Initial boundary value problem for the spherically symmetric
motion of isentropic gas.
Japan J.Indust.Appl.Math.11 (1994), 171-183.
J.Michel and R.Robert.
Large deviations for Young measures and statistical
mechanics of infinite dimensional dynamical systems with conservation law.
Comm.Math.Phys.159 (1994), 195-215.
M.Sychev.
Young measure approach to characterization of behaviour of integral
functionals on weakly convergent sequences by means of their integrands.
Ann.Inst.H.Poincare15 (1998), 755-782.