次へ:
3 転置行列
上へ:
行列式の性質の証明について
前へ:
1 はじめに
(
PDF ファイル:
detprf1.pdf
)
2
定義
私が講義で説明している、行列式の「帰納的な」定義は以下の通りである:
定義
1
次の正方行列
に対し、
の行列式
を
(
1
)
と定める。ここで、
は、
の
行目と
列目を取り除いた
次の行列の行列式とする。
つまり、ひとつ低い次数の行列式を使っての定義であり、 例えば、
(
2
)
(
3
)
のようになっていて、1 次、2 次、3 次と順に定義されることになる。 このような定義を
帰納的な定義
という。
次へ:
3 転置行列
上へ:
行列式の性質の証明について
前へ:
1 はじめに
竹野茂治@新潟工科大学
2006年12月8日