next up previous
Next: 6 Convergence to an Up: Time-periodic solutions Previous: 4 Decay estimates (PDF file: paper9.pdf)


5 Compactness of entropy

In this section, we show the compactness of

\begin{displaymath}
\{U(u^\Delta (t,x))_t + F(u^\Delta (t,x))_x ; \hspace{1em}
(u^0_1,u^0_3,\ldots,u^0_{2L-1})\in D_L, L\geq L_0\}
\end{displaymath}

in $\mbox{$H^{-1}_{\rm loc}((0,T)\times(0,1))$}$ for any smooth entropy pair $(U(u),F(u))$, where $L_0$ is sufficiently large integer for (19) and (22).

For simplify, we set $u^{2n}_{0,+}(x)$ as the function consists of the step values $u^{2n}_{0,j}$

\begin{displaymath}
u^{2n}_{0,+}(x) = u^{2n}_{0,j} \hspace{1em}(x\in E^{2n}_j)
\end{displaymath}

and use notations

\begin{displaymath}
u^n_+(x)=u(n\Delta t+0,x),\hspace{2em}u^n_-(x)=u(n\Delta t-0,x),\hspace{2em}
f^n_j = f(u^n_j),
\end{displaymath}

and so on.

We consider for a particular entropy pairs $(U^\ast,F^\ast)$ defined by

\begin{displaymath}
U^\ast = \frac{u^2}{2}, \hspace{2em}F^\ast=\int_0^u uf'(u) = uf - \int_0^u f.
\end{displaymath}

Since the approximation $u^\Delta (t,x)$ satisfies the equation (12) almost everywhere,

\begin{eqnarray*}
%% \lefteqn{ 0 = \int_0^Tdt\int_0^1 \{U^\ast(\uD(t,x))_t
0 ...
...U^\ast)^{2n}_{0,+}\}dx \\
& & + \Sigma^\ast + I^\ast + J^\ast,
\end{eqnarray*}



where

\begin{eqnarray*}
J^\ast & = & \sum_{n=1}^N \sum_{j=1}^L \int_{E_{2j-1}^{2n}}
...
...\int_0^T \sum_{\mbox{shock}}
(\sigma [U^\ast]-[F^\ast]) dt,\\
\end{eqnarray*}



$\sum_{\mbox{shock}}$ is summation for all the shock waves arise in $[0,T]\times[0,1]$, $[U^\ast]$ and $[F^\ast]$ is the difference across the wave, and $\sigma$ is the speed of it. Because of

\begin{eqnarray*}
& & (U^\ast)'' = 1,\hspace{1em}
u^{2n-1}_{+} = \frac{1}{m(E^...
...t_{E^{2n}_{2j-1}}u^{2n}_{-}dx
\hspace{2em}(x\in E^{2n}_{2j-1}),
\end{eqnarray*}



we have

\begin{eqnarray*}
\frac{1}{2}\sum_{n=1}^{N} \int_0^1 \vert u^{2n-1}_{-} - u^{2n...
...n}_{-} - u^{2n}_{0,+}\vert^2 dx
+\Sigma^\ast = -I^\ast -J^\ast.
\end{eqnarray*}



The boundedness of $u^\Delta (t,x)$

\begin{displaymath}
\vert u^\Delta (t,x)\vert\leq M+TG_0
\end{displaymath}

shows that

\begin{eqnarray*}
\vert J^\ast\vert & \leq & \sum_{n=1}^N \sum_{j=1}^L \int_{E_...
...x + \int_0^1\vert U^\ast(+0,x)\vert dx \\
& \leq & (M+TG_0)^2.
\end{eqnarray*}



Hence we obtain the inequality
$\displaystyle {\frac{1}{2}\sum_{n=1}^{N}\int_0^1\vert u^{2n-1}_{-}-u^{2n-1}_{+}...
...+\frac{1}{2}\sum_{n=1}^{N} \int_0^1 \vert u^{2n}_{-} - u^{2n}_{0,+}\vert^2 dx }$
  $\textstyle +$ $\displaystyle \int_0^T \sum_{\mbox{shock}} (\sigma [U^\ast]-[F^\ast]) dt
\hspace{1em}\leq \hspace{1em}C(M,T,G_0),$ (27)

where $C(M,T,G_0)$ is a constant depends on $M$, $T$ and $G_0$.

Let $\phi(t,x)$ be a function in $C_0^\infty((0,T)\times(0,1))$. The integral

\begin{displaymath}
\int\hspace{-6pt}\int _{[0,T]\times[0,1]}\{U(u^\Delta )\phi_t+F(u^\Delta )\phi_x\}dtdx\end{displaymath} (28)

is divided into four parts

\begin{eqnarray*}
\lefteqn{ \int\hspace{-6pt}\int _{[0,T]\times[0,1]}\{U(u^\Del...
...)_x\}dtdx \\
& = & \Sigma(\phi)+L_1(\phi)+L_2(\phi)+L_3(\phi),
\end{eqnarray*}



where

\begin{eqnarray*}
\Sigma(\phi) & = & \int_0^T \sum_{\mbox{shock}} (\sigma [U]-[...
...{2n}}
(\phi-\phi_{2j-1}^{2n})(U^{2n}_{-} - U^{2n}_{0,+})dx,\\
\end{eqnarray*}



and $\phi^n_j=\phi(n\Delta t,j\Delta x)$. We estimate $L_j(\phi)$

\begin{eqnarray*}
\vert L_1(\phi)\vert & \leq & \Vert\phi\Vert _{C^0}\max_{\ver...
...T,G_0,\Lambda_2) \Vert\phi\Vert _{C^\beta}(\Delta x)^{\beta-1/2}
\end{eqnarray*}



and $\Sigma(\phi)$

\begin{displaymath}
\vert\Sigma(\phi)\vert\leq \Vert\phi\Vert _{C^0}\max_{\vert ...
...''(u)\vert\Sigma^\ast
\leq C(U'',M,T,G_0)\Vert\phi\Vert _{C^0}
\end{displaymath}

by the similar way in [3] (I). Hence the integral (28) is the sum of two linear operators $T_1(\phi)$ and $T_2(\phi)$ which satisfy

\begin{displaymath}
\vert T_1(\phi)\vert \leq C \Vert\phi\Vert _{C^0},\hspace{2e...
...\vert \leq C \Vert\phi\Vert _{C^\beta} (\Delta x)^{\beta-1/2},
\end{displaymath}

where the constant $C$ depends on $M$, $T$, $G_0$, maximum value of $U'$ and $U''$, and $\Lambda_2$. This shows the following proposition by the argument in [3] (I).

PROPOSITION 5   For any smooth entropy pair $(U,F)$, the set

\begin{displaymath}
\{U(u^\Delta (t,x))_t + F(u^\Delta (t,x))_x ; \hspace{1em}
(u^0_1,u^0_3,\ldots,u^0_{2L-1})\in D_L, L\geq L_0\}
\end{displaymath}

is relatively compact in $\mbox{$H^{-1}_{\rm loc}((0,T)\times(0,1))$}$.

Proposition 5 and Tartar's theorem ([15]) yields the existence of subsequence which converges almost everywhere. It also valid for the initial data $(\bar{u}^0_1,\bar{u}^0_3,\ldots,\bar{u}^0_{2L-1})$4).


next up previous
Next: 6 Convergence to an Up: Time-periodic solutions Previous: 4 Decay estimates
Shigeharu TAKENO
15 January 2002