¼¡¤Ø: 3.2 ¹àÊÌÈùʬ¡¢¹àÊÌÀÑʬ ¾å¤Ø: 3 ¥Ù¥­µé¿ô Á°¤Ø: 3 ¥Ù¥­µé¿ô (PDF ¥Õ¥¡¥¤¥ë: series1.pdf)


3.1 ¼ý«Ⱦ·Â

2.2 Àá¤ÎµÄÏÀ¤Ë¤è¤ê¡¢

\begin{displaymath}
\vert a_nx^n\vert\leq M_n,\hspace{1zw}\sum_{n=0}^\infty M_n<\infty
\end{displaymath}

¤È¤Ê¤ë¤è¤¦¤Ê $M_n$ ¤¬Â¸ºß¤¹¤ì¤Ð¤³¤Î¥Ù¥­µé¿ô¤Ï¡¢ ¤³¤Î¾ò·ï¤¬Ëþ¤¿¤µ¤ì¤ë $x$ ¤ËÂФ·¤ÆÀäÂмý«¤¹¤ë¡£ ¤³¤Î¤è¤¦¤Êµé¿ô $\displaystyle \sum_{n=0}^\infty M_n$ ¤ò¤³¤Î¥Ù¥­µé¿ô (8) ¤ÎÍ¥µé¿ô ¤È¤¤¤¦¡£

º£¡¢¤â¤·

\begin{displaymath}
\left\vert\frac{a_{n+1}}{a_n}\right\vert\rightarrow \ell > 0
\hspace{1zw}(n\rightarrow\infty \mbox{ ¤Î¤È¤­})
\end{displaymath}

¤Ç¤¢¤ë¾ì¹ç¡¢

\begin{displaymath}
\left\vert\frac{a_{n+1}x^{n+1}}{a_nx^n}\right\vert
=\left\ve...
...n+1}}{a_n}\right\vert\vert x\vert\rightarrow \ell \vert x\vert
\end{displaymath}

¤Ç¤¢¤ë¤«¤é¡¢¥À¥é¥ó¥Ù¡¼¥ë¤ÎȽÄêË¡¤Ë¤è¤ê $\ell \vert x\vert<1$¡¢¤¹¤Ê¤ï¤Á $\vert x\vert<1/\ell$ ¤Î¤È¤­¥Ù¥­µé¿ô (8) ¤ÏÀäÂмý«¤·¡¢ $\vert x\vert>1/\ell$ ¤Î¤È¤­¤Ïȯ»¶¤¹¤ë¤³¤È¤¬¤ï¤«¤ë¡£ ¤Ä¤Þ¤ê¡¢0 ¤òÃæ¿´¤È¤·¤Æ¡¢ $-1/\ell<x<1/\ell$ ¤ÎÈϰϤǼý«¤¹¤ë¤³¤È¤Ë¤Ê¤ë¤¬¡¢ °ìÈ̤ˡ¢¼¡¤Î¤³¤È¤¬¸À¤¨¤ë¡£


ÄêÍý 11

¤É¤ó¤Ê¥Ù¥­µé¿ô (8) ¤ËÂФ·¤Æ¤â¡¢

¤È¤Ê¤ë¤è¤¦¤Ê $0\leq r\leq\infty$ ¤¬Â¸ºß¤¹¤ë¡£ ¤¿¤À¤·¡¢$r=0$ ¤Î¤È¤­¤Ï¡¢$x=0$ °Ê³°¤Ç¤Ï¼ý«¤·¤Ê¤¤ ($\vert x\vert>0$ ¤Ê¤é¤Ðȯ»¶)¡¢ $r=\infty$ ¤Î¤È¤­¤Ï¡¢¤¹¤Ù¤Æ¤Î $x$ ¤ËÂФ·¤Æ¼ý«¤¹¤ë ($\vert x\vert<\infty$ ¤Ê¤é¤Ð¼ý«) ¤³¤È¤ò°ÕÌ£¤¹¤ë¡£


¤³¤Î $r$ ¤ò¡¢¤³¤Î¥Ù¥­µé¿ô¤Î ¼ý«Ⱦ·Â ¤È¸Æ¤Ö¡£

$r=0$ ¤Ç¤¢¤ë¤è¤¦¤Ê¥Ù¥­µé¿ô¤È¤·¤Æ¤Ï¡¢Î㤨¤Ð

\begin{displaymath}
\sum_{n=0}^\infty n!x^n
\end{displaymath}

¤¬¤¢¤ë¤·¡¢$r=\infty$ ¤Ç¤¢¤ë¤è¤¦¤Ê¥Ù¥­µé¿ô¤È¤·¤Æ¤Ï¡¢Î㤨¤Ð

\begin{displaymath}
\sum_{n=0}^\infty \frac{x^n}{n!}\hspace{1zw}(=e^x)
\end{displaymath}

¤¬¤¢¤ë¡£Á°¼Ô¤Ï

\begin{displaymath}
\left\vert\frac{(n+1)!x^{n+1}}{n!x^n}\right\vert=(n+1)\vert ...
...>0\mbox{ ¤Î¤È¤­})\\
0 & (x=0\mbox{ ¤Î¤È¤­})\end{array}\right.\end{displaymath}

¤È¤Ê¤ë¤Î¤Ç¡¢$x\neq 0$ ¤Ê¤é¤Ð¤³¤Î¥Ù¥­µé¿ô¤Ï¼ý«¤·¤Ê¤¤¡£¸å¼Ô¤Ï

\begin{displaymath}
\left\vert\frac{\displaystyle \frac{x^{n+1}}{(n+1)!}}{\displ...
...c{x^n}{n!}}\right\vert
=\frac{\vert x\vert}{n+1}
\rightarrow 0
\end{displaymath}

¤È¤Ê¤ë¤Î¤Ç¡¢¤É¤ó¤Ê $x$ ¤ËÂФ·¤Æ¤âÀäÂмý«¤¹¤ë¡£

¼ý«Ⱦ·Â¤Ï¡¢°ìÈ̤˼¡¤Î¤è¤¦¤Ê¼°¤Ç¤¢¤é¤ï¤µ¤ì¤ë¤³¤È¤¬ÃΤé¤ì¤Æ¤¤¤ë:

\begin{displaymath}
r=\frac{1}{\displaystyle \limsup_{n\rightarrow\infty}\sqrt[n]{\vert a_n\vert}}
\end{displaymath}

¼°¤Î°ÕÌ£¤â´Þ¤á¤Æ¡¢¾Ü¤·¤¤¤³¤È¤Ë´Ø¤·¤Æ¤Ï¡¢²òÀϳؤξܤ·¤¤ËÜ¡¢ ¤¢¤ë¤¤¤Ïµé¿ôÏÀ¤Ë´Ø¤¹¤ë½ñÀÒ¤ò»²¾È¤·¤Æ¤â¤é¤¤¤¿¤¤¤¬¡¢ ¥³¡¼¥·¡¼¤ÎȽÊÌË¡¤È´ØÏ¢¤¬¤¢¤ë¤³¤È¤¬¤Ü¤ó¤ä¤ê¤ÈÁÛÁü¤µ¤ì¤ë¤È»×¤¦¡£ ¼ÂºÝ¡¢¤³¤ÎÀá¤ÎºÇ½é¤Ë¾Ò²ð¤·¤¿¤è¤¦¤Ë¡¢

\begin{displaymath}
\lim_{n\rightarrow\infty}\left\vert\frac{a_{n+1}}{a_n}\right...
...Þ¤¿¤Ï }
\lim_{n\rightarrow\infty}\sqrt[n]{\vert a_n\vert}=\ell
\end{displaymath}

¤Ê¤é¤Ð $r=1/\ell$ ¤È¤Ê¤ë¡£

¥Þ¥¯¥í¡¼¥ê¥óŸ³«¤ÎÍ­¸Â¹à¤Ë¤è¤ë¶á»÷¼°¤â¡¢¼ý«Ⱦ·ÂÆâ¤Ç¤Ï¶á»÷¤Ë¤Ê¤ë¤¬¡¢ ¼ý«Ⱦ·Â³°¤Ç¤Ï¶á»÷¤Ë¤Ï¤Ê¤é¤Ê¤¤¤·¡¢ ¼ý«Ⱦ·ÂÆâ¤Ç¤â¼ý«Ⱦ·Â¤Ë¶á¤¤ $x$ ¤Ç¤Ï¤½¤Î¶á»÷¤ÎÀºÅ٤ϰ­¤¯¤Ê¤ë¡£


¼¡¤Ø: 3.2 ¹àÊÌÈùʬ¡¢¹àÊÌÀÑʬ ¾å¤Ø: 3 ¥Ù¥­µé¿ô Á°¤Ø: 3 ¥Ù¥­µé¿ô
ÃÝÌîÌм£¡÷¿·³ã¹©²ÊÂç³Ø
2006ǯ9·î26Æü