next up previous
Next: 3 $BJL$K2CK!DjM}$rF3$/J}K!(B Up: $B;03Q4X?t$N2CK!DjM}$K$D$$$F(B Previous: 1 $B$O$8$a$K(B (PDF ¥Õ¥¡¥¤¥ë: sinadd.pdf)

2 $B?^7A$K$h$k2CK!DjM}$N>ZL@(B

$B$^$:!"?^7A$K$h$k=iEyE*$J2CK!DjM}$N>ZL@$r$$$/$D$+>R2p$9$k!#(B $B$?$@$7!"G$0U$N3QEY$KBP$9$k$b$N$G$O$J$/!">.$5$$@5$N3Q$KBP$9$k$b$N$G$"$k$7!"(B $B$3$l$i0J30$K$b?^7AE*$J>ZL@$OB?J,?'!9$"$k$H;W$&!#(B


$B>ZL@(B 1

$B?^(B 1 $B$N$h$&$K!"D>3Q;03Q7A$r(B 2 $B$D=E$M$k!#(B

$B?^(B 1: $B>ZL@(B 1 $B$N?^(B
\includegraphics[width=0.6\textwidth]{sinadd1.eps}

$B:#(B $AD=1$ $B$H$9$k$H(B $AC=\cos y$ $B$H$J$k$N$G(B $AB = AC\cos x=\cos y\cos x$ $B$H$J$k!#(B

$B0lJ}(B $CD= \sin y$ $B$G$"$j!";03Q7A(B $AEF$ $B$H;03Q7A(B $DCF$ $B$OAj;w$J$N$G(B $B3Q(B $CDF=x$ $B$G$"$j!"$h$C$F(B $BE = CG = CD\sin x = \sin x\sin y$ $B$H$J$k!#(B $B$f$($K(B

\begin{displaymath}
\cos(x + y) = AE = AB-BE = \cos x\cos y - \sin x\sin y
\end{displaymath}

$B$H$J$k!#(B

$B$^$?!"(B $DG = CD\cos x = \sin y \cos x$, $GE = CB = AC\sin x = \cos y \sin x$ $B$H$J$k$N$G!"(B

\begin{displaymath}
\sin(x + y) = DE = GE + DG = \sin x\cos y + \cos x\sin y
\end{displaymath}

$B$H$J$k!#(B



$B>ZL@(B 2

$B?^(B 2 $B$N$h$&$K!"D>3Q;03Q7A$r(B 2 $B$DJB$Y$F0l$D$N;03Q7A(B $ABC$ $B$r:n$k!#(B

$B?^(B 2: $B>ZL@(B 2 $B$N?^(B
\includegraphics[width=0.6\textwidth]{sinadd2.eps}
$B$3$N9b$5(B $AD=1$ $B$H$9$k$H!"(B

\begin{displaymath}
AB = \frac{1}{\cos x},\hspace{1zw}
BD = AB\sin x = \frac{\sin x}{\cos x} =\tan x
\end{displaymath}

$BF1MM$K(B

\begin{displaymath}
AC = \frac{1}{\cos y},\hspace{1zw}
CD = AC\sin y = \frac{\sin y}{\cos y} =\tan y
\end{displaymath}

$B$h$j(B $BC = BD + CD = \tan x + \tan y$ $B$G$"$k!#(B $B$h$C$F!"M>89DjM}(B

\begin{displaymath}
BC^2 = AB^2 + AC^2 -2AB\cdot AC\cos (x+y)
\end{displaymath}

$B$h$j!"(B

\begin{displaymath}
(\tan x + \tan y)^2 = \frac{1}{\cos^2 x} + \frac{1}{\cos^2 y}
-2\frac{1}{\cos x}\cdot\frac{1}{\cos y}\cos(x+y)
\end{displaymath}

$B$H$J$k$N$G!"(B

\begin{eqnarray*}
\lefteqn{2\frac{1}{\cos x}\cdot\frac{1}{\cos y}\cos(x+y)}\\
...
... y}\\
& = & 2\frac{\cos x\cos y - \sin x\sin y}{\cos x\cos y}
\end{eqnarray*}

$B$H$J$k!#$h$C$FN>JU$K(B $\cos x\cos y/2$ $B$r$+$1$l$P(B cos $B$N2CK!DjM}(B (2) $B$,F@$i$l$k!#(B

$B0lJ}!"LL@Q$r9M$($k$H!"(B

\begin{displaymath}
\triangle ABD = \frac{1}{2}AD\cdot BD = \frac{1}{2}\tan x,
...
...w}
\triangle ACD = \frac{1}{2}AD\cdot CD = \frac{1}{2}\tan y
\end{displaymath}

$B$G$"$j!"$^$?(B

\begin{displaymath}
\triangle ABC = \frac{1}{2}AB\cdot AC\sin(x+y)
= \frac{\sin(x+y)}{2\cos x\cos y}
\end{displaymath}

$B$G$"$k$N$G(B

\begin{displaymath}
\frac{\sin(x+y)}{\cos x\cos y} = \tan x+\tan y
= \frac{\sin x}{\cos x} + \frac{\sin y}{\cos y}
\end{displaymath}

$B$H$J$j!"N>JU$K(B $\cos x\cos y$ $B$r$+$1$l$P(B sin $B$N2CK!DjM}(B (1) $B$,F@$i$l$k$3$H$K$J$k!#(B


$B>ZL@(B 1 $B$NJ}$O?^$r9)IW$7$F!"<0$G$N7W;;$r>/$J$/$9$k>ZL@J}K!$G!"(B $B>ZL@(B 1 $B$NJ}$O?^$OC1=c$G!"$`$7$m<0$N7W;;$G7k2L$r=P$9>ZL@J}K!$G$"$j!"(B $B$=$l$>$lFCD'$,$"$k$N$G!"$3$l$i$N>ZL@$rF,$KF~$l$F2CK!DjM}$r3P$($h$&$H$9$k(B $B>l9g$O$=$NFCD'$KCm0U$7!"$I$A$i$,3P$($d$9$$$N$+$rHf3S$9$k$H$h$$!#(B

$B$J$*!";d$,9b9;$N$H$-$O!";03Q4X?t$N2CK!DjM}$O9TNs$N0l9TNs$r;H$C$?>ZL@J}K!$G65$o$C$?!#$9$J$o$A!"(B

\begin{displaymath}
\left[
\begin{array}{rr}
\cos(x+y) & -\sin(x+y)\\
\sin(x+...
...}{rr}
\cos y & -\sin y\\
\sin y & \cos y
\end{array}\right]
\end{displaymath}

$B$N9TNs$N@Q$H$7$F>ZL@$9$k$d$jJ}$G$"$k!#(B $B$7$+$78=:_9b9;$N%+%j%-%e%i%`$G$O0l
next up previous
Next: 3 $BJL$K2CK!DjM}$rF3$/J}K!(B Up: $B;03Q4X?t$N2CK!DjM}$K$D$$$F(B Previous: 1 $B$O$8$a$K(B
Shigeharu TAKENO
2003$BG/(B 3$B7n(B 4$BF|(B