
A User’s Manual for MetaPost

John D. Hobby

AT&T Bell Laboratories
Murray Hill, NJ 07974

ABSTRACT

The MetaPost system implements a picture-drawing language very much like Knuth’s METAFONT

except that it outputs PostScript commands instead of run-length-encoded bitmaps. MetaPost is
a powerful language for producing figures for documents to be printed on PostScript printers. It
provides easy access to all the features of PostScript and it includes facilities for integrating text
and graphics.

This document serves as an introductory user’s manual. It does not require knowledge of META-
FONT or access to The METAFONTbook, but both are beneficial. An appendix explains the differences
between MetaPost and METAFONT.

A User’s Manual for MetaPost i

Contents

1 Introduction . 1

2 Basic Drawing Statements . 2

3 Curves . 3
3.1 Bézier Cubic Curves . 5
3.2 Specifying Direction, Tension, and Curl . 5
3.3 Summary of Path Syntax . 7

4 Linear Equations . 9
4.1 Equations and Coordinate Pairs . 9
4.2 Dealing with Unknowns . 11

5 Expressions . 12
5.1 Data Types . 12
5.2 Operators . 13
5.3 Fractions, Mediation, and Unary Operators . 15

6 Variables . 16
6.1 Tokens . 16
6.2 Variable Declarations . 17

7 Integrating Text and Graphics . 18
7.1 Typesetting Your Labels . 20
7.2 The infont operator . 22
7.3 Measuring Text . 22

8 Advanced Graphics . 23
8.1 Building Cycles . 25
8.2 Dealing with Paths Parametrically . 27
8.3 Affine Transformations . 30
8.4 Dashed Lines . 32
8.5 Other Options . 35
8.6 Pens . 38
8.7 Clipping and Low-Level Drawing Commands . 39

9 Macros . 41
9.1 Grouping . 42
9.2 Parameterized Macros . 43
9.3 Suffix and Text Parameters . 46
9.4 Vardef Macros . 49
9.5 Defining Unary and Binary Macros . 50

10 Loops . 52

11 Making Boxes . 54
11.1 Rectangular Boxes . 54
11.2 Circular and Oval Boxes . 57

12 Debugging . 60

A Reference Manual . 62

A User’s Manual for MetaPost ii

B MetaPost Versus METAFONT . 79

REFERENCES . 82

1

1 Introduction

MetaPost is a programming language much like Knuth’s METAFONT
1 [4] except that it outputs

PostScript programs instead of bitmaps. Borrowed from METAFONT are the basic tools for creating
and manipulating pictures. These include numbers, coordinate pairs, cubic splines, affine transfor-
mations, text strings, and boolean quantities. Additional features facilitate integrating text and
graphics and accessing special features of PostScript2 such as clipping, shading, and dashed lines.
Another feature borrowed from METAFONT is the ability to solve linear equations that are given
implicitly, thus allowing many programs to be written in a largely declarative style. By building
complex operations from simpler ones, MetaPost achieves both power and flexibility.

MetaPost is particularly well-suited to generating figures for technical documents where some
aspects of a picture may be controlled by mathematical or geometrical constraints that are best
expressed symbolically. In other words, MetaPost is not meant to take the place of a freehand draw-
ing tool or even an interactive graphics editor. It is really a programming language for generating
graphics, especially figures for TEX3 and troff documents. The figures can be integrated into a TEX
document via a freely available program called dvips as shown in Figure 1.4 A similar procedure
works with troff: the dpost output processor includes PostScript figures when they are requested
via troff’s \X command.

Figures in MetaPost TEX Document�
�

MetaPost TEX

�
�

Figures in PostScript dvi file�
�

dvips

�
PostScript

Figure 1: A diagram of the processing for a TEX document with figures in MetaPost

To use MetaPost, you prepare an input file containing MetaPost code and then invoke MetaPost,
usually by giving a command of the form

mp 〈file name〉

(This syntax could be system dependent). MetaPost input files normally have names ending “.mp”
but this part of the name can be omitted when invoking MetaPost. For an input file foo.mp

mp foo

1METAFONT is a trademark of Addison Wesley Publishing company.
2PostScript is a trademark of Adobe Systems Inc.
3TEX is a trademark of the American Mathematical Society.
4The C source for dvips comes with the web2c TEX distribution. Similar programs are available from other sources.

A User’s Manual for MetaPost 2

invokes MetaPost and produces output files with names like foo.1 and foo.2. Any terminal I/O
is summarized in a transcript file called foo.log. This includes error messages and any MetaPost
commands entered interactively.5 The transcript file starts with a banner line that tells what version
of MetaPost you are using.

This document introduces the MetaPost language, beginning with the features that are easiest
to use and most important for simple applications. The first few sections describe the language as
it appears to the novice user with key parameters at their default values. Some features described
in these sections are part of a predefined macro package called Plain. Later sections summarize the
complete language and distinguish between primitives and preloaded macros from the Plain macro
package. Since much of the language is identical to Knuth’s METAFONT, the appendix gives a
detailed comparison so that advanced users can learn more about MetaPost by reading The META-
FONTbook. [4]

2 Basic Drawing Statements

The simplest drawing statements are the ones that generate straight lines. Thus

draw (20,20)--(0,0)

draws a diagonal line and

draw (20,20)--(0,0)--(0,30)--(30,0)--(0,0)

draws a polygonal line like this:

What is meant by coordinates like (30,0)? MetaPost uses the same default coordinate system
that PostScript does. This means that (30,0) is 30 units to the right of the origin, where a unit
is 1

72 of an inch. We shall refer to this default unit as a PostScript point to distinguish it from the
standard printer’s point which is 1

72.27 inches.

MetaPost uses the same names for units of measure that TEX and METAFONT do. Thus bp refers
to PostScript points (“big points”) and pt refers to printer’s points. Other units of measure include
in for inches, cm for centimeters, and mm for millimeters. For example,

(2cm,2cm)--(0,0)--(0,3cm)--(3cm,0)--(0,0)

generates a larger version of the above diagram. It is OK to say 0 instead 0cm because cm is really
just a conversion factor and 0cm just multiplies the conversion factor by zero. (MetaPost understands
constructions like 2cm as shorthand for 2*cm).

It is often convenient to introduce your own scale factor, say u. Then you can define coordinates
in terms of u and decide later whether you want to begin with u=1cm or u=0.5cm. This gives you
control over what gets scaled and what does not so that changing u will not affect features such as
line widths.

There are many ways to affect the appearance of a line besides just changing its width, so the
width-control mechanisms allow a lot of generality that we do not need yet. This leads to the strange
looking statement

pickup pencircle scaled 4pt

5A * prompt is used for interactive input and a ** prompt indicates that an input file name is expected. This can
be avoided by invoking MetaPost on a file that ends with an end command.

A User’s Manual for MetaPost 3

for setting the line width for subsequent draw statements to 4 points. (This is about eight times the
default line width).

With such a wide line width, even a line of zero length comes out as a big bold dot. We can use
this to make a grid of bold dots by having one draw statement for each grid point. Such a repetitive
sequence of draw statements is best written as a pair of nested loops:

for i=0 upto 2:
for j=0 upto 2: draw (i*u,j*u); endfor

endfor

The outer loop runs for i = 0, 1, 2 and the inner loop runs for j = 0, 1, 2. The result is a three-
by-three grid of bold dots as shown in Figure 2. The figure also includes a larger version of the
polygonal line diagram that we saw before.

beginfig(2);
u=1cm;
draw (2u,2u)--(0,0)--(0,3u)--(3u,0)--(0,0);
pickup pencircle scaled 4pt;
for i=0 upto 2:
for j=0 upto 2: draw (i*u,j*u); endfor

endfor
endfig;

Figure 2: MetaPost commands and the resulting output

Note that the program in Figure 2 starts with beginfig(2) and ends with endfig. These
are macros that perform various administrative functions and ensure that the results of all the draw
statements get packaged up and translated into PostScript. A MetaPost input file normally contains
a sequence of beginfig, endfig pairs with an end statement after the last one. If this file is named
fig.mp, the output from draw statements between beginfig(1) and the next endfig is written in
a file fig.1. In other words, the numeric argument to the beginfig macro determines the name of
the corresponding output file.

What does one do with all the PostScript files? They can be included as figures in a TEX or
troff document if you have an output driver that can handle encapsulated PostScript figures. If your
standard TEX macro directory contains a file epsf.tex, you can probably include fig.1 in a TEX
document as follows:

\input epsf
...

$$\epsfbox{fig.1}$$

The \epsfbox macro figures out how much room to leave for the figure and uses TEX’s \special
command to insert a request for fig.1.

It is also possible to include MetaPost output in a troff document. The -mpictures macro
package defines a command .BP that includes an encapsulated PostScript file. For instance, the troff
command

.BP fig.1 3c 3c

includes fig.1 and specifies that its height and width are both three centimeters.

3 Curves

MetaPost is perfectly happy to draw curved lines as well as straight ones. A draw statement with
the points separated by .. draws a smooth curve through the points. For example consider the

A User’s Manual for MetaPost 4

result of
draw z0..z1..z2..z3..z4

after defining five points as follows:

z0 = (0,0); z1 = (60,40);
z2 = (40,90); z3 = (10,70);
z4 = (30,50);

Figure 3 shows the curve with points z0 through z4 labeled.

0

2

4
3

1

Figure 3: The result of draw z0..z1..z2..z3..z4

There are many other ways to draw a curved path through the same five points. To make a
smooth closed curve, connect z4 back to the beginning by appending ..cycle to the draw statement
as shown in Figure 4a. It is also possible in a single draw statement to mix curves and straight lines
as shown in Figure 4b. Just use -- where you want straight lines and .. where you want curves.
Thus

draw z0..z1..z2..z3--z4--cycle

produces a curve through points 0, 1, 2, and 3, then a polygonal line from point 3 to point 4 and
back to point 0. The result is essentially the same as having two draw statements

draw z0..z1..z2..z3

and
draw z3--z4--z0

2

4

0

3

1

(a)

2

4

0

3

1

(b)

Figure 4: (a) The result of draw z0..z1..z2..z3..z4..cycle; (b) the result of draw z0..z1..
z2..z3--z4--cycle.

A User’s Manual for MetaPost 5

3.1 Bézier Cubic Curves

When MetaPost is asked to draw a smooth curve through a sequence of points, it constructs a
piecewise cubic curve with continuous slope and approximately continuous curvature. This means
that a path specification such as

z0..z1..z2..z3..z4..z5

results in a curve that can be defined parametrically as (X(t), Y (t)) for 0 ≤ t ≤ 5, where X(t)
and Y (t) are piecewise cubic functions. That is, there is a different pair of cubic functions for each
integer-bounded t-interval. If z0 = (x0, y0), z1 = (x1, y1), z2 = (x2, y2), . . . , MetaPost selects Bézier
control points (x+

0 , y+
0), (x−

1 , y−
1), (x+

1 , y+
1), . . . , where

X(t + i) = (1 − t)3xi + 3t(1 − t)2x+
i + 3t2(1 − t)x−

i+1 + t3xi+1,

Y (t + i) = (1 − t)3yi + 3t(1 − t)2y+
i + 3t2(1 − t)y−

i+1 + t3yi+1

for 0 ≤ t ≤ 1. The precise rules for choosing the Bézier control points are described in [2] and in
The METAFONTbook [4] .

In order for the path to have a continuous slope at (xi, yi), the incoming and outgoing directions
at (X(i), Y (i)) must match. Thus the vectors

(xi − x−
i , yi − y−

i) and (x+
i − xi, y+

i − yi)

must have the same direction; i.e., (xi, yi) must be on the line segment between (x−
i , y−

i) and
(x+

i , y+
i). This situation is illustrated in Figure 5 where the Bézier control points selected by Meta-

Post are connected by dashed lines. For those who are familiar with the interesting properties of
this construction, MetaPost allows the control points to be specified directly in the following format:

draw (0,0)..controls (26.8,-1.8) and (51.4,14.6)
..(60,40)..controls (67.1,61.0) and (59.8,84.6)
..(40,90)..controls (25.4,94.0) and (10.5,84.5)
..(10,70)..controls (9.6,58.8) and (18.8,49.6)
..(30,50);

0

2

4
3

1

Figure 5: The result of draw z0..z1..z2..z3..z4 with the automatically-selected Bézier control
polygon illustrated by dashed lines.

3.2 Specifying Direction, Tension, and Curl

MetaPost provides many ways of controlling the behavior of a curved path without actually specifying
the control points. For instance, some points on the path may be selected as vertical or horizontal

A User’s Manual for MetaPost 6

extrema. If z1 is to be a horizontal extreme and z2 is to be a vertical extreme, you can specify that
(X(t), Y (t)) should go upward at z1 and to the left at z2:

draw z0..z1{up}..z2{left}..z3..z4;

The resulting shown in Figure 6 has the desired vertical and horizontal directions at z1 and z2,
but it does not look as smooth as the curve in Figure 3. The reason is the large discontinuity in
curvature at z1. If it were not for the specified direction at z1, the MetaPost interpreter would have
chosen a direction designed to make the curvature above z1 almost the same as the curvature below
that point.

0

2

4
3

1

Figure 6: The result of draw z0..z1{up}..z2{left}..z3..z4.

How can the choice of directions at given points on a curve determine whether the curvature
will be continuous? The reason is that curves used in MetaPost come from a family where a path is
determined by its endpoints and the directions there. Figures 7 and 8 give a good idea of what this
family of curves is like.

beginfig(7)
for a=0 upto 9:
draw (0,0){dir 45}..{dir -10a}(6cm,0);

endfor
endfig;

Figure 7: A curve family and the MetaPost instructions for generating it

beginfig(8)
for a=0 upto 7:
draw (0,0){dir 45}..{dir 10a}(6cm,0);

endfor
endfig;

Figure 8: Another curve family with the corresponding MetaPost instructions

Figures 7 and 8 illustrate a few new MetaPost features. The first is the dir operator that takes
an angle in degrees and generates a unit vector in that direction. Thus dir 0 is equivalent to right
and dir 90 is equivalent to up. There are also predefined direction vectors left and down for dir
180 and dir 270.

The direction vectors given in {} can be of any length, and they can come before a point as well
as after one. It is even possible for a path specification to have directions given before and after a
point. For example a path specification containing

..{dir 60}(10,0){up}..

A User’s Manual for MetaPost 7

produces a curve with a corner at (10, 0).

Note that some of the curves in Figure 7 have points of inflection. This is necessary in order to
produce smooth curves in situations like Figure 4a, but it is probably not desirable when dealing
with vertical and horizontal extreme points as in Figure 9a. If z1 is supposed to be the topmost
point on the curve, this can be achieved by using ... instead of .. in the path specification as shown
in Figure 9b. The meaning of ... is “choose an inflection-free path between these points unless the
endpoint directions make this impossible.” (It would be possible to avoid inflections in Figure 7,
but not in Figure 8).

0
1

2
draw z0{up}..z1{right}..z2{down}

0
1

2
draw z0{up}...z1{right}...z2{down}

Figure 9: Two draw statements and the resulting curves.

Another way to control a misbehaving path is to increase the “tension” parameter. Using .. in
a path specification sets the tension parameter to the default value 1. If this makes some part of a
path a little too wild, we can selectively increase the tension. If Figure 10a is considered “too wild,”
a draw statement of the following form increases the tension between z1 and z2:

draw z0..z1..tension 1.3..z2..z3

This produces Figure 10b. For an asymmetrical effect like Figure 10c, the draw statement becomes

draw z0..z1..tension 1.6 and 1..z2..z3

The tension parameter can be less than one, but it must be at least 3
4 .

0

1 2

3
(a)

0

1 2

3
(b)

0

1 2

3
(c)

Figure 10: Results of draw z0..z1..tension α and β ..z2..z3 for various α and β: (a) α = β = 1;
(b) α = β = 1.3; (c) α = 1.5, β = 1.

MetaPost paths also have a parameter called “curl” that affects the ends of a path. In the absence
of any direction specifications, the first and last segments of a non-cyclic path are approximately
circular arcs as in the c = 1 case of Figure 11. To use a different value for the curl parameter, specify
{curl c} for some other value of c. Thus

draw z0{curl c}..z1..{curl c}z2

sets the curl parameter for z0 and z2. Small values of the curl parameter reduce the curvature at
the indicated path endpoints, while large values increase the curvature as shown in Figure 11. In
particular, a curl value of zero makes the curvature approach zero.

3.3 Summary of Path Syntax

There are a few other features of MetaPost path syntax, but they are relatively unimportant. Since
METAFONT uses the same path syntax, interested readers can refer to [4, chapter 14] . The summary of

A User’s Manual for MetaPost 8

0

1

2

c = 0
0

1

2

c = 1
0

1

2

c = 2
0

1

2

c = ∞

Figure 11: Results of draw z0{curl c}..z1..{curl c}z2 for various values of the curl parameter c.

path syntax in Figure 12 includes everything discussed so far including the -- and ... constructions
which [4] shows to be macros rather than primitives. A few comments on the semantics are in order
here: If there is a non-empty 〈direction specifier〉 before a 〈path knot〉 but not after it, or vice versa,
the specified direction (or curl amount) applies to both the incoming and outgoing path segments.
A similar arrangement applies when a 〈controls〉 specification gives only one 〈pair primary〉. Thus

..controls (30,20)..

is equivalent to
...controls (30,20) and (30,20)..

〈path expression〉 → 〈path subexpression〉
| 〈path subexpression〉〈direction specifier〉
| 〈path subexpression〉〈path join〉 cycle

〈path subexpression〉 → 〈path knot〉
| 〈path expression〉〈path join〉〈path knot〉

〈path join〉 → --
| 〈direction specifier〉〈basic path join〉〈direction specifier〉

〈direction specifier〉 → 〈empty〉
| {curl 〈numeric expression〉}
| {〈pair expression〉}
| {〈numeric expression〉,〈numeric expression〉}

〈basic path join〉 → .. | ... | ..〈tension〉.. | ..〈controls〉..
〈tension〉 → tension〈numeric primary〉

| tension〈numeric primary〉and〈numeric primary〉
〈controls〉 → controls〈pair primary〉

| controls〈pair primary〉and〈pair primary〉

Figure 12: The syntax for path construction

A pair of coordinates like (30,20) or a z variable that represents a coordinate pair is what
Figure 12 calls a 〈pair primary〉. A 〈path knot〉 is similar except that it can take on other forms
such as a path expression in parentheses. Primaries and expressions of various types will be discussed
in full generality in Section 5.

A User’s Manual for MetaPost 9

4 Linear Equations

An important feature taken from METAFONT is the ability to solve linear equations so that programs
can be written in a partially declarative fashion. For example, the MetaPost interpreter can read

a+b=3; 2*a=b+3;

and deduce that a = 2 and b = 1. The same equations can be written slightly more compactly by
stringing them together with multiple equal signs:

a+b = 2*a-b = 3;

Whichever way you give the equations, you can then give the command

show a,b;

to see the values of a and b. MetaPost responds by typing

>> 2
>> 1

Note that = is not an assignment operator; it simply declares that the left-hand side equals
the right-hand side. Thus a=a+1 produces an error message complaining about an “inconsistent
equation.” The way to increase the value of a is to use the assignment operator := as follows:

a:=a+1;

In other words, := is for changing existing values while = is for giving linear equations to solve.

There is no restriction against mixing equations and assignment operations as in the following
example:

a = 2; b = a; a := 3; c = a;

After the first two equations set a and b equal to 2, the assignment operation changes a to 3 without
affecting b. The final value of c is 3 since it is equated to the new value of a. In general, an
assignment operation is interpreted by first computing the new value, then eliminating the old value
from all existing equations before actually assigning the new value.

4.1 Equations and Coordinate Pairs

MetaPost can also solve linear equations involving coordinate pairs. We have already seen many
trivial examples of this in the form of equations like

z1=(0,.2in)

Each side of the equation must be formed by adding or subtracting coordinate pairs and multiplying
or dividing them by known numeric quantities. Other ways of naming pair-valued variables will be
discussed later, but the z〈number〉 is convenient because it is an abbreviation for

(x〈number〉, y〈number〉)
This makes it possible to give values to z variables by giving equations involving their coordinates.
For instance, points z1, z2, z3, and z6 in Figure 13 were initialized via the following equations:

z1=-z2=(.2in,0);

x3=-x6=.3in;

x3+y3=x6+y6=1.1in;

A User’s Manual for MetaPost 10

Exactly the same points could be obtained by setting their values directly:

z1=(.2in,0); z2=(-.2in,0);
z3=(.3in,.6in); z6=(-.3in,1.2in);

After reading the equations, the MetaPost interpreter knows the values of z1, z2, z3, and z6.
The next step in the construction of Figure 13 is to define points z4 and z5 equally spaced along
the line from z3 to z6. Since this operation comes up often, MetaPost has a special syntax for it.
This mediation construction

z4=1/3[z3,z6]

means that z4 is 1
3 of the way from z3 to z6; i.e.,

z4 = z3 +
1
3
(z6− z3).

Similarly
z5=2/3[z3,z6]

makes z5 2
3 of the way from z3 to z6.

beginfig(13);
z1=-z2=(.2in,0);
x3=-x6=.3in;
x3+y3=x6+y6=1.1in;
z4=1/3[z3,z6];
z5=2/3[z3,z6];
z20=whatever[z1,z3]=whatever[z2,z4];
z30=whatever[z1,z4]=whatever[z2,z5];
z40=whatever[z1,z5]=whatever[z2,z6];
draw z1--z20--z2--z30--z1--z40--z2;
pickup pencircle scaled 1pt;
draw z1--z2;
draw z3--z6;
endfig;

12

3

6

20
3040

Figure 13: MetaPost commands and the resulting figure. Point labels have been added to the figure
for clarity.

Mediation can also be used to say that some point is at an unknown position along the line
between two known points. For instance, we could a introduce new variable aa and write something
like

z20=aa[z1,z3];

This says that z20 is some unknown fraction aa of the way along the line between z1 and z3.
Another such equation involving a different line is sufficient to fix the value of z20. To say that z20
is at the intersection of the z1-z3 line and the z2-z4 line, introduce another variable ab and set

z20=ab[z2,z4];

This allows MetaPost to solve for x20, y20, aa, and ab.

It is a little painful to keep thinking up new names like aa and ab. This can be avoided by using
a special feature called whatever. This macro generates a new anonymous variable each time it
appears. Thus the statement

z20=whatever[z1,z3]=whatever[z2,z4]

A User’s Manual for MetaPost 11

sets z20 as before, except it uses whatever to generate two different anonymous variables instead
of aa and ab. This is how Figure 13 sets z20, z30, and z40.

4.2 Dealing with Unknowns

A system of equations such as those used in Figure 13 can be given in any order as long as all the
equations are linear and all the variables can be determined before they are needed. This means
that the equations

z1=-z2=(.2in,0);

x3=-x6=.3in;

x3+y3=x6+y6=1.1in;

z4=1/3[z3,z6];

z5=2/3[z3,z6];

suffice to determine z1 through z6, no matter what order the equations are given in. On the other
hand

z20=whatever[z1,z3]

is legal only when a known value has previously been specified for the difference z3 − z1, because
the equation is equivalent to

z20 = z1 + whatever*(z3-z1)

and the linearity requirement disallows multiplying unknown components of z3− z1 by the anony-
mous unknown result of whatever. The general rule is that you cannot multiply two unknown
quantities or divide by an unknown quantity, nor can an unknown quantity be used in a draw
statement. Since only linear equations are allowed, the MetaPost interpreter can easily solve the
equations and keep track of what values are known.

The most natural way to ensure that MetaPost can handle an expression like

whatever[z1,z3]

is to ensure that z1 and z3 are both known. However this is not actually required since MetaPost
may be able to deduce a known value for z3−z1 before either of z1 and z3 are known. For instance,
MetaPost will accept the equations

z3=z1+(.1in,.6in); z20=whatever[z1,z3];

but it will not be able to determine any of the components of z1, z3, or z20.

These equations do give partial information about z1, z3, and z20. A good way to see this is to
give another equation such as

x20-x1=(y20-y1)/6;

This produces the error message “! Redundant equation.” MetaPost assumes that you are trying
to tell it something new, so it will usually warn you when you give a redundant equation. If the new
equation had been

(x20-x1)-(y20-y1)/6=1in;

the error message would have been

! Inconsistent equation (off by 71.99979).

This error message illustrates roundoff error in MetaPost’s linear equation solving mechanism.
Roundoff error is normally not a serious problem. but it is likely to cause trouble if you are trying
to do something like find the intersection of two lines that are almost parallel.

A User’s Manual for MetaPost 12

5 Expressions

It is now time for a more systematic view of the MetaPost language. We have seen that there
are numeric quantities and coordinate pairs, and that these can be combined to specify paths for
draw statements. We have also seen how variables can be used in linear equations, but we have not
discussed all the operations and data types that can be used in equations.

It is possible to experiment with expressions involving any of the data types mentioned below
by using the statement

show 〈expression〉
to ask MetaPost to print a symbolic representation of the value of each expression. For known
numeric values, each is printed on a new line preceded by “>> ”. Other types of results are printed
similarly, except that complicated values are sometimes not printed on standard output. This
produces a reference to the transcript file that looks like this:

>> picture (see the transcript file)

If you want to the full results of show statements to be printed on your terminal, assign a positive
value to the internal variable tracingonline.

5.1 Data Types

MetaPost actually has nine basic data types: numeric, pair, path, transform, color, string, boolean,
picture, and pen. Let us consider these one at a time beginning with the numeric type.

Numeric quantities in MetaPost are represented in fixed point arithmetic as integer multiples of
1

65536 . They must normally have absolute values less than 4096 but intermediate results can be eight
times larger. This should not be a problem for distances or coordinate values since 4096 PostScript
points is more than 1.4 meters. If you need to work with numbers of magnitude 4096 or more, setting
the internal variable warningcheck to zero suppresses the warning messages about large numeric
quantites.

The pair type is represented as a pair of numeric quantities. We have seen that pairs are used to
give coordinates in draw statements. Pairs can be added, subtracted, used in mediation expressions,
or multiplied or divided by numerics.

Paths have already been discussed in the context of draw statements, but that discussion did not
mention that paths are first-class objects that can be stored and manipulated. A path represents a
straight or curved line that is defined parametrically.

Another data type represents an arbitrary affine transformation. A transform can be any com-
bination of rotating, scaling, slanting, and shifting. If p = (px, py) is a pair and T is a transform,

p transformed T

is a pair of the form
(tx + txxpx + txypy, ty + tyxpx + tyypy),

where the six numeric quantities (tx, ty, txx, txy, tyx, tyy) determine T. Transforms can also be applied
to paths, pictures, pens, and transforms.

The color type is a lot like the pair type, except that it has three components instead of two.
Like pairs, colors can be added, subtracted, used in mediation expressions, or multiplied or divided
by numerics. Colors can be specified in terms of the predefined constants black, white, red, green,
blue, or the red, green, and blue components can be given explicitly. Black is (0,0,0) and white is

A User’s Manual for MetaPost 13

(1,1,1). A level of gray such as (.4,.4,.4) can be specified as 0.4white. There is no restriction
against colors “blacker than black” or “whiter than white” except all components are snapped back
to the [0, 1] range when a color is given in a PostScript output file. MetaPost solves linear equations
involving colors the same way it does for pairs.

A string represents a sequence of characters. String constants are given in double quotes
"like this". String constants cannot contain double quotes or newlines, but there is a way to
construct a string containing any sequence of eight-bit characters.

The boolean type has the constants true and false and the operators and, or, not. The relations
= and <> test objects of any type for equality and inequality. Comparison relations <, <=, >, and
>= are defined lexicographically for strings and in the obvious way for numerics. Ordering relations
are also defined for booleans, pairs, colors, and transforms, but the comparison rules are not worth
discussing here.

The picture data type is just what the name implies. Anything that can be drawn in MetaPost
can be stored in a picture variable. In fact, the draw statement actually stores its results in a special
picture variable called currentpicture. Pictures can be added to other pictures and operated on
by transforms.

Finally, there is a data type called a pen. The main function of pens in MetaPost is to determine
line thickness, but they can also be used to achieve calligraphic effects. The statement

pickup 〈pen expression〉
causes the given pen to be used in subsequent draw statements. Normally, the pen expression is of
the form

pencircle scaled 〈numeric primary〉.
This defines a circular pen that produces lines of constant thickness. If calligraphic effects are
desired, the pen expression can be adjusted to give an elliptical pen or a polygonal pen.

5.2 Operators

There are many different ways to make expressions of the nine basic types, but most of the operations
fit into a fairly simple syntax with four levels of precedence as shown in Figure 14. There are
primaries, secondaries, tertiaries, and expressions of each of the basic types, so the syntax rules
could be specialized to deal with items such as 〈numeric primary〉, 〈boolean tertiary〉, etc. This
allows the result type for an operation to depend on the choice of operator and the types of its
operands. For example, the < relation is a 〈tertiary binary〉 that can be applied to a 〈numeric
expression〉 and a 〈numeric tertiary〉 to give a 〈boolean expression〉. The same operator can accept
other operand types such as 〈string expression〉 and 〈string tertiary〉, but an error message results
if the operand types do not match.

The multiplication and division operators * and / are examples of what Figure 14 calls a 〈primary
binop〉. Each can accept two numeric operands or one numeric operand and one operand of type pair
or color. The exponentiation operator ** is a 〈primary binop〉 that requires two numeric operands.
Placing this at the same level of precedence as multiplication and division has the unfortunate
consequence that 3*a**2 means (3a)2, not 3(a2). Since unary negation applies at the primary level,
it also turns out that -a**2 means (−a)2. Fortunately, subtraction has lower precedence so that
a-b**2 does mean a − (b2) instead of (a − b)2.

Another 〈primary binop〉 is the dotprod operator that computes the vector dot product of two
pairs. For example, z1 dotprod z2 is equivalent to x1*y1 + x2*y2.

The additive operators + and - are 〈secondary binops〉 that operate on numerics, pairs, or colors
and produce results of the same type. Other operators that fall in this category are “Pythagorean

A User’s Manual for MetaPost 14

〈primary〉 → 〈variable〉
| (〈expression〉)
| 〈nullary op〉
| 〈of operator〉〈expression〉of〈primary〉
| 〈unary op〉〈primary〉

〈secondary〉 → 〈primary〉
| 〈secondary〉〈primary binop〉〈primary〉

〈tertiary〉 → 〈secondary〉
| 〈tertiary〉〈secondary binop〉〈secondary〉

〈expression〉 → 〈tertiary〉
| 〈expression〉〈tertiary binop〉〈tertiary〉

Figure 14: The overall syntax rules for expressions

addition” ++ and “Pythagorean subtraction” +-+: a++b means
√

a2 + b2 and a+-+b means
√

a2 − b2.
There are too many other operators to list here, but some of the most important are the boolean
operators and and or. The and operator is a 〈primary binop〉 and the or operator is a 〈secondary
binop〉.

The basic operations on strings are concatenation and substring construction. The 〈tertiary
binop〉 & implements concatenation; e.g.,

"abc" & "de"

produces the string "abcde". For substring construction, the 〈of operator〉 substring is used like
this:

substring 〈pair expression〉 of 〈string primary〉
The 〈pair expression〉 determines what part of the string to select. For this purpose, the string is
indexed so that integer positions fall between characters. Pretend the string is written on a piece of
graph paper so that the first character occupies x coordinates between zero and one and the next
character covers the range 1 ≤ x ≤ 2, etc. Thus the string "abcde" should be thought of like this

a
1
b

2
c

3
d

4
e

5x = 0

and substring (2,4) of "abcde" is "cd". This takes a little getting used to but it tends to avoid
annoying “off by one” errors.

Some operators take no arguments at all. An example of what Figure 14 calls a 〈nullary op〉 is
nullpicture which returns a completely blank picture.

The basic syntax in Figure 14 only covers aspects of the expression syntax that are relatively
type-independent. For instance, the complicated path syntax given in Figure 12 gives alternative
rules for constructing a 〈path expression〉. An additional rule

〈path knot〉 → 〈pair tertiary〉 | 〈path tertiary〉

explains the meaning of 〈path knot〉 in Figure 12. This means that the path expression

z1+(1,1){right}..z2

does not need parentheses around z1+(1,1).

A User’s Manual for MetaPost 15

5.3 Fractions, Mediation, and Unary Operators

Mediation expressions do not appear in the basic expression syntax of Figure 14. Mediation expres-
sions are parsed at the 〈primary〉 level, so the general rule for constructing them is

〈primary〉 → 〈numeric atom〉[〈expression〉,〈expression〉]
where each 〈expression〉 can be of type numeric, pair, or color. The 〈numeric atom〉 in a mediation
expression is an extra simple type of 〈numeric primary〉 as shown in Figure 15. The meaning of all
this is that the initial parameter in a mediation expression needs to be parenthesized when it is not
just a variable, a positive number, or a positive fraction. For example,

-1[a,b] and (-1)[a,b]

are very different: the former is −b since it is equivalent to -(1[a,b]); the latter is a − (b − a) or
2a − b.

〈numeric primary〉 → 〈numeric atom〉
| 〈numeric atom〉[〈numeric expression〉,〈numeric expression〉]
| 〈of operator〉〈expression〉of〈primary〉
| 〈unary op〉〈primary〉

〈numeric atom〉 → 〈numeric variable〉
| 〈number or fraction〉
| (〈numeric expression〉)
| 〈numeric nullary op〉

〈number or fraction〉 → 〈number〉/〈number〉
| 〈number not followed by ‘/〈number〉’〉

Figure 15: Syntax rules for numeric primaries

A noteworthy feature of the syntax rules in Figure 15 is that the / operator binds most tightly
when its operands are numbers. Thus 2/3 is a 〈numeric atom〉 while (1+1)/3 is only a 〈numeric
secondary〉. Applying a 〈primary binop〉 such as sqrt makes the difference clear:

sqrt 2/3

means
√

2
3 while

sqrt(1+1)/3

means
√

2/3. Operators such as sqrt can be written in standard functional notation, but it is often
unnecessary to parenthesize the argument. This applies to any function that is parsed as a 〈primary
binop〉. For instance abs(x) and abs x both compute the absolute value of x. The same holds for
the round, floor, ceiling, sind, and cosd functions. The last two of these compute trigonometric
functions of angles in degrees.

Not all unary operators take numeric arguments and return numeric results. For instance, the
abs operator can be applied to a pair to compute the Euclidean length of a vector. Applying the
unitvector operator to a pair produces the same pair rescaled so that its Euclidean length is 1. The
decimal operator takes a number and returns the string representation. The angle operator takes
a pair and computes the two-argument arctangent; i.e., angle is the inverse of the dir operator
that was discussed in Section 3.2. There is also an operator cycle that takes a 〈path primary〉 and
returns a boolean result indicating whether the path is a closed curve.

A User’s Manual for MetaPost 16

There is a whole class of other operators that classify expressions and return boolean results. A
type name such as pair can operate on any type of 〈primary〉 and return a boolean result indicating
whether the argument is a pair. Similarly, each of the following can be used as a unary operator:
numeric, boolean, color, string, transform, path, pen, and picture. Besides just testing the
type of a 〈primary〉, you can use the known and unknown operators to test if it has a completely
known value.

Even a number can behave like an operator in some contexts. This refers to the trick that allows
3x and 3cm as alternatives to 3*x and 3*cm. The rule is that a 〈number or fraction〉 that is not
followed by +, -, or another 〈number or fraction〉 can serve as a 〈primary binop〉. Thus 2/3x is two
thirds of x but (2)/3x is 2

3x and 3 3 is illegal.

There are also operators for extracting numeric subfields from pairs, colors, and even transforms.
If p is a 〈pair primary〉, xpart p and ypart p extract its components so that

(xpart p, ypart p)

is equivalent to p even if p is an unknown pair that is being used in a linear equation. Similarly, a
color c is equivalent to

(redpart c, greenpart c, bluepart c)

The part specifiers for transforms will be discussed later.

6 Variables

MetaPost allows compound variable names such as x.a, x2r, y2r, and z2r, where z2r means
(x2r,y2r) and z.a means (x.a,y.a). In fact there is a broad class of suffixes such that z〈suf-
fix〉 means

(x〈suffix〉, y〈suffix〉).
Since a 〈suffix〉 is composed of tokens, it is best to begin with a few comments about tokens.

6.1 Tokens

A MetaPost input file is treated as a sequence of numbers, string constants, and symbolic tokens. A
number consists of a sequence of digits possibly containing a decimal point. Technically, the minus
sign in front of a negative number is a separate token. Since MetaPost uses fixed point arithmetic,
it does not understand exponential notation such as 6.02E23. MetaPost would interpret this as the
number 6.02, followed by the symbolic token E, followed by the number 23.

Anything between a pair of double quotes " is a string constant. It is illegal for a string constant
to start on one line and end on a later line. Nor can a string constant contain double quotes " or
anything other than printable ASCII characters.

Everything in a line of input other than numbers and string constants is broken into symbolic
tokens. A symbolic token is a sequence of one or more similar characters, where characters are
“similar” if they occur on the same row of Table 1.

Thus A_alpha and +-+ are symbolic tokens but != is interpreted as two tokens and x34 is a
symbolic token followed by a number. Since the brackets [and] are listed on lines by themselves,
the only symbolic tokens involving them are [, [[, [[[, etc. and],]], etc.

Some characters are not listed in Table 1 because they need special treatment. The four characters
,;() are “loners”: each comma, semicolon, or parenthesis is a separate token even when they occur

A User’s Manual for MetaPost 17

ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz
:<=>|
#&@$
/*\
+-
!?
’‘
^~
{}
[
]

Table 1: Character classes for tokenization

consecutively. Thus (()) is four tokens, not one or two. The percent sign is very special because it
introduces comments. The percent sign and everything after it up to the end of the line are ignored.

Another special character is the period. Two or more periods together form a symbolic token,
but a single period is ignored, and a period preceded or followed by digits is part of a number Thus
.. and ... are symbolic tokens while a.b is just two tokens a and b. It conventional to use periods
to separate tokens in this fashion when naming a variable that is more than one token long.

6.2 Variable Declarations

A variable name is a symbolic token or a sequence of symbolic tokens. Most symbolic tokens are
legitimate variable names, but anything with a predefined meaning like draw, +, or .. is disallowed;
i.e., variable names cannot be macros or MetaPost primitives. This minor restriction allows an
amazingly broad class of variable names: alpha, ==>, @&#$&, and ~~ are all legitimate variable
names. Such symbolic tokens without special meanings are called tags.

A variable name can be a sequence of tags like f.bot or f.top. The idea is to provide some of
the functionality of Pascal records or C structures. It is also possible to simulate arrays by using
variable names that contain numbers as well as symbolic tokens. For example, the variable name
x2r consists of the tag x, the number 2, and the tag r. There can also be variables named x3r and
even x3.14r. These variables can be treated as an array via constructions like x[i]r, where i has
an appropriate numeric value. The overall syntax for variable names is shown in Figure 16.

〈variable〉 → 〈tag〉〈suffix〉
〈suffix〉 → 〈empty〉 | 〈suffix〉〈subscript〉 | 〈suffix〉〈tag〉
〈subscript〉 → 〈number〉 | [〈numeric expression〉]

Figure 16: The syntax for variable names.

Variables like x2 and y2 take on numeric values by default, so we can use the fact that z〈suffix〉
is an abbreviation for

(x〈suffix〉, y〈suffix〉)
to generate pair-valued variables when needed. It turns out that the beginfig macro wipes out
pre-existing values variables that begin with the tags x or y so that beginfig . . . endfig blocks do
not interfere with each other when this naming scheme is used. In other words, variables that start

A User’s Manual for MetaPost 18

with x, y, z are local to the figure they are used in. General mechanisms for making variables local
will be discussed in Section 9.1.

Type declarations make it possible to use almost any naming scheme while still wiping out any
previous value that might cause interference. For example, the declaration

pair pp, a.b;

makes pp and a.b unknown pairs. Such a declaration is not strictly local since pp and a.b are not
automatically restored to their previous values at the end of the current figure. Of course, they are
restored to unknown pairs if the declaration is repeated.

Declarations work the same way for any of the other eight types: numeric, path, transform,
color, string, boolean, picture, and pen. The only restriction is that you cannot give explicit numeric
subscripts in a variable declaration. Do not give the illegal declaration

numeric q1, q2, q3;

use the generic subscript symbol [] instead, to declare the whole array:

numeric q[];

You can also declare “multidimensional” arrays. After the declaration

path p[]q[], pq[][];

p2q3 and pq1.4 5 are both paths.

Tnternal variables like tracingonline cannot be declared in the normal fashion. All the internal
variables discussed in this manual are predefined and do not have to be declared at all, but there is a
way to declare that a variable should behave like a newly-created internal variable. The declaration
is newinternal followed by a list of symbolic tokens. For example,

newinternal a, b, c;

causes a, b, and c to behave like internal variables. Such variables always have known numeric values,
and these values can only be changed by using the assignment operator :=. Internal variables are
initially zero except that the Plain macro package gives some of them nonzero initial values. (The
Plain macros are normally preloaded automatically as explained in Section 1.)

7 Integrating Text and Graphics

MetaPost has a number of features for including labels and other text in the figures it generates.
The simplest way to do this is to use the label statement

label〈label suffix〉(〈string or picture expression〉, 〈pair expression〉);
The 〈string or picture expression〉 gives the label and the 〈pair expression〉 says where to put it.
The 〈label suffix〉 can be 〈empty〉 in which case the label is just centered on the given coordinates.
If you are labeling some feature of a diagram you probably want to offset the label slightly to avoid
overlapping. This is illustrated in Figure 17 where the "a" label is placed above the midpoint of the
line it refers to and the "b" label is to the left of the midpoint of its line. This is achieved by using
label.top for the "a" label and label.lft for the "b" label as shown in the figure. The 〈label
suffix〉 specifies the position of the label relative to the specified coordinates. The complete set of
possibilities is

〈label suffix〉 → 〈empty〉 | lft | rt | top | bot | ulft | urt | llft | lrt

A User’s Manual for MetaPost 19

beginfig(17);
a=.7in; b=.5in;
z0=(0,0);
z1=-z3=(a,0);
z2=-z4=(0,b);
draw z1..z2..z3..z4..cycle;
draw z1--z0--z2;
label.top("a", .5[z0,z1]);
label.lft("b", .5[z0,z2]);
dotlabel.bot("(0,0)", z0);
endfig;

a
b

(0,0)

Figure 17: MetaPost code and the resulting output

where lft and rt mean left and right and llft, ulft, etc. mean lower left, upper left, etc. The
actual amount by which the label is offset in whatever direction is determined by the internal variable
labeloffset.

Figure 17 also illustrates the dotlabel statement. This is exactly like the label statement
except that it adds a dot at the indicated coordinates. For example

dotlabel.bot("(0,0)", z0)

places a dot at z0 and then puts the label “(0,0)” just below the dot. Another alternative is the
macro thelabel. This has the same syntax as the label and dotlabel statements except that it
returns the label as a 〈picture primary〉 instead of actually drawing it. Thus

label.bot("(0,0)", z0)

is equivalent to
draw thelabel.bot("(0,0)", z0)

For simple applications of labeled figures, you can normally get by with just label and dotlabel.
In fact, you may be able to use a short form of the dotlabel statement that saves a lot of typing
when you have many points z0, z1, z.a, z.b, etc. and you want to use the z suffixes as labels. The
statement

dotlabels.rt(0, 1, a);

is equivalent to

dotlabel.rt("0",z0); dotlabel.rt("1",z1); dotlabel.rt("a",z.a);

Thus the argument to dotlabels is a list of suffixes for which z variables are known, and the 〈label
suffix〉 given with dotlabels is used to position all the labels.

There is also a labels statement that is analogous to dotlabels but its use is discouraged
because it presents compatibility problems with METAFONT. Some versions of the preloaded Plain
macro package define labels to be synonymous with dotlabels.

For labeling statements such as label and dotlabel that use a string expression for the label
text, the string gets typeset in a default font as determined by the string variable defaultfont.
The initial value of defaultfont is likely to be "cmr10", but it can be changed to a different font
name by giving an assignment such as

defaultfont:="Times-Roman"

A User’s Manual for MetaPost 20

There is also a numeric quantity called defaultscale that determines the type size. When default-
scale is 1, you get the “normal size” which is usually 10 point, but this can also be changed. For
instance

defaultscale := 1.2

makes labels come out twenty percent larger. If you do not know the normal size and you want to
be sure the text comes out at some specific size, say 12 points, you can use the fontsize operator
to determine the normal size: e.g.,

defaultscale := 12pt/fontsize defaultfont;

When you change defaultfont, the new font name should be something that TEX would under-
stand since MetaPost gets height and width information by reading the tfm file. (This is explained
in The TEXbook . [5]) It should be possible to use built-in PostScript fonts, but the names for them
are system-dependent. Some systems may use rptmr or ps-times-roman instead of Times-Roman.
A TEX font such as cmr10 is a little dangerous because it does not have a space character or certain
ASCII symbols. In addition, MetaPost does not use the ligatures and kerning information that
comes with a TEX font.

7.1 Typesetting Your Labels

TEX may be used to format complex labels. If you say

btex 〈typesetting commands〉 etex
in a MetaPost input file, the 〈typesetting commands〉 get processed by TEX and translated into a
picture expression (actually a 〈picture primary〉) that can be used in a label or dotlabel statement.
Any spaces after btex or before etex are ignored. For instance, the statement

label.lrt(btex $\sqrt x$ etex, (3,sqrt 3)*u)

in Figure 18 places the label
√

x at the lower right of the point (3,sqrt 3)*u.

beginfig(18);
numeric u;
u = 1cm;
draw (0,2u)--(0,0)--(4u,0);
pickup pencircle scaled 1pt;
draw (0,0){up}

for i=1 upto 8: ..(i/2,sqrt(i/2))*u endfor;
label.lrt(btex $\sqrt x$ etex, (3,sqrt 3)*u);
label.bot(btex x etex, (2u,0));
label.lft(btex y etex, (0,u));
endfig;

√
x

x

y

Figure 18: MetaPost code and the resulting output

Figure 19 illustrates some of the more complicated things that can be done with labels. Since the
result of btex . . . etex is a picture, it can be operated on like a picture. In particular, it is possible
to apply transformations to pictures. We have not discussed the syntax for this yet, but a 〈picture
secondary〉 can be

〈picture secondary〉 rotated 〈numeric primary〉
This is used in Figure 19 to rotate the label “y axis” so that it runs vertically.

A User’s Manual for MetaPost 21

beginfig(19);
numeric ux, uy;
120ux=1.2in; 4uy=2.4in;
draw (0,4uy)--(0,0)--(120ux,0);
pickup pencircle scaled 1pt;
draw (0,uy){right}
for ix=1 upto 8:

..(15ix*ux, uy*2/(1+cosd 15ix))
endfor;

label.bot(btex x axis etex, (60ux,0));
label.lft(btex y axis etex rotated 90,

(0,2uy));
label.lft(
btex $\displaystyle y={2\over1+\cos x}$ etex,
(120ux, 4uy));

endfig; x axis

y
ax

is

y =
2

1 + cos x

Figure 19: MetaPost code and the resulting output

Another complication in Figure 19 is the use of the displayed equation

y =
2

1 + cos x

as a label. It would be more natural to code this as

$$y={2\over 1+\cos x}$$

but this would not work because TEX typesets the labels in “horizontal mode.”

Here is how TEX material gets translated into a form MetaPost understands: The MetaPost
processor skips over btex . . . etex blocks and depends on a preprocessor to translate them into low
level MetaPost commands. If the main file is fig.mp, the translated TEX material is placed in a file
named fig.mpx. This is normally done silently without any user intervention but it could fail if one
of the btex . . . etex blocks contains an erroneous TEX command. Then the erroneous TEX input is
saved in the file mpxerr.tex and the error messages appear in mpxerr.log.

TEX macro definitions or any other auxiliary TEX commands can be enclosed in a verbatimtex
. . . etex block. The difference between btex and verbatimtex is that the former generates a picture
expression while the latter only adds material for TEX to process. For instance, if you want TEX to
typeset labels using macros defined in mymac.tex, your MetaPost input file would look something
like this:

verbatimtex \input mymac etex

beginfig(1);
...

label(btex 〈TEX material using mymac.tex〉 etex, 〈some coordinates〉);
...

On Unix6 systems, an environment variable can be used to specify that btex . . . etex and
verbatimtex . . . etex blocks are in troff instead of TEX. When using this option, it is a good idea

6Unix is a registered trademark of Unix Systems Laboratories.

A User’s Manual for MetaPost 22

to start your MetaPost input file with the assignment prologues:=1. Giving this internal variable
a positive value causes causes output to be formatted as “structured PostScript” generated on the
assumption that text comes from built-in PostScript fonts. This makes MetaPost output much more
portable, but it has an important drawback: It generally does not work when you use TEX fonts, since
programs that translate TEX output into PostScript need to make special provisions for TEX fonts
in included figures and the standard PostScript structuring rules do not allow for this. The details
on how to include PostScript figures in a paper done in TEX or troff are system-dependent. They
can generally be found in manual pages and other on-line documentation. A file called dvips.tex
is distributed electronically along with the dvips TEX output processor.

7.2 The infont operator

Regardless of whether you use TEX or troff, all the real work of adding text to pictures is done by a
MetaPost primitive operator called infont. It is a 〈primary binop〉 that takes a 〈string secondary〉
as its left argument and a 〈string primary〉 as its right argument. The left argument is text, and the
right argument is a font name. The result of the operation is a 〈picture secondary〉 that can then
be transformed in various ways. One possibility is enlargement by a given factor via the syntax

〈picture secondary〉 scaled 〈numeric primary〉
Thus label("text",z0) is equivalent to

label("text" infont defaultfont scaled defaultscale, z0)

If it is not convenient to use a string constant for the left argument of infont, you can use

char 〈numeric primary〉
to select a character based on its numeric position in the font. Thus

char(n+64) infont "Times-Roman"

is a picture containing character n+64 of the Times-Roman font.

7.3 Measuring Text

MetaPost makes readily available the physical dimensions of pictures generated by the infont
operator. There are unary operators llcorner, lrcorner, urcorner, ulcorner, and center that
take a 〈picture primary〉 and return the corners of its “bounding box” as illustrated in Figure 20.
The center operator also accepts 〈path primary〉 and 〈pen primary〉 operands. In MetaPost Version
0.30 and higher, llcorner, lrcorner, etc. accept all three argument types as well.

The argument type restrictions on the corner operators are not very important because their main
purpose is to allow label and dotlabel statements to center their text properly. The predefined
macro

bbox 〈picture primary〉
finds a rectangular path that represents the bounding box of a given picture. If p is a picture, bbox
p equivalent to

(llcorner p--lrcorner p--urcorner p--ulcorner p--cycle)

except that it allows for a small amount of extra space around p as specified by the internal variable
bboxmargin.

A User’s Manual for MetaPost 23

testing
llcorner lrcorner

ulcorner urcorner

Figure 20: A bounding box and its corner points.

Note that MetaPost computes the bounding box of a btex . . . etex picture just the way TEX
does. This is quite natural, but it has certain implications in view of the fact that TEX has features
like \strut and \rlap that allow TEX users to lie about the dimensions of a box.

When TEX commands that lie about the dimensions of a box are translated in to low-level
MetaPost code, a setbounds statement does the lying:

setbounds 〈picture variable〉 to 〈path expression〉

makes the 〈picture variable〉 behave as if its bounding box were the same as the given path. To get the
true bounding box of such a picture, assign a positive value to the internal variable truecorners:7

i.e.,
show urcorner btex \bullet\rlap{ A} etex

produces “>> (4.9813,6.8078)” while

truecorners:=1; show urcorner btex \bullet\rlap{ A} etex

produces “>> (15.7742,6.8078).”

8 Advanced Graphics

All the examples in the previous sections have been simple line drawings with labels added. This
section describes shading and tools for generating not-so-simple line drawings. Shading is done with
the fill statement. In its simplest form, the fill statement requires a 〈path expression〉 that gives
the boundary of the region to be filled. In the syntax

fill 〈path expression〉

the argument should be a cyclic path, i.e., a path that describes a closed curve via the ..cycle or
--cycle notation. For example, the fill statement in Figure 21 builds a closed path by extending
the roughly semicircular path p. This path has a counter-clockwise orientation, but that does not
matter because the fill statement uses PostScript’s non-zero winding number rule [1] .

The general fill statement

fill 〈path expression〉 withcolor 〈color expression〉

specifies a shade of gray or (if you have a color printer) some rainbow color.

Figure 22 illustrates several applications of the fill command to fill areas with shades of gray.
The paths involved are intersecting circles a and b and a path ab that bounds the region inside both
circles. Circles a and b are derived from a predefined path fullcircle that approximates a circle
of unit diameter centered on the origin. There is also a predefined path halfcircle that is the part

A User’s Manual for MetaPost 24

beginfig(21);
path p;
p = (-1cm,0)..(0,-1cm)..(1cm,0);
fill p{up}..(0,0){-1,-2}..{up}cycle;
draw p..(0,1cm)..cycle;
endfig;

Figure 21: MetaPost code and the corresponding output.

beginfig(22);
path a, b, aa, ab;
a = fullcircle scaled 2cm;
b = a shifted (0,1cm);
aa = halfcircle scaled 2cm;
ab = buildcycle(aa, b);
picture pa, pb;
pa = thelabel(btex A etex, (0,-.5cm));
pb = thelabel(btex B etex, (0,1.5cm));
fill a withcolor .7white;
fill b withcolor .7white;
fill ab withcolor .4white;
unfill bbox pa;
draw pa;
unfill bbox pb;
draw pb;
label.lft(btex U etex, (-1cm,.5cm));
draw bbox currentpicture;
endfig;

A

B

U

Figure 22: MetaPost code and the corresponding output.

A User’s Manual for MetaPost 25

of fullcircle above the x axis. Path ab is the initialized using a predefined macro buildcycle
that will be discussed shortly.

Filling circle a with the light gray color .7white and then doing the same with circle b doubly
fills the region where the disks overlap. The rule is that each fill statement assigns the given color
to all points in the region covered, wiping out whatever was there previously including lines and
text as well as filled regions. Thus it is important to give fill commands in the right order. In the
above example, the overlap region gets the same color twice, leaving it light gray after the first two
fill statements. The third fill statement assigns the darker color .4white to the overlap region.

At this point the circles and the overlap region have their final colors but there are no cutouts
for the labels. The cutouts are achieved by the unfill statements that effectively erase the re-
gions bounded by bbox pa and bbox pb. More precisely, unfill is shorthand for filling withcolor
background, where background is normally equal to white as is appropriate for printing on white
paper. If necessary, you can assign a new color value to background.

The labels need to be stored in pictures pa and pb to allow for measuring their bounding box
before actually drawing them. The macro thelabel creates such pictures and shifts them into
position so that they are ready to draw. Using the resulting pictures in draw statements of the form

draw 〈picture expression〉

adds them to currentpicture so that they overwrite a portion of what has already been drawn. In
Figure 22 just the white rectangles produced by unfill get overwritten.

8.1 Building Cycles

The buildcycle command constructs paths for use with the fill or unfill macros. When given
two or more paths such as aa and b, the buildcycle macro tries to piece them together so as to form
a cyclic path. In this case path aa is a semicircle that starts just to the right of the intersection with
path b, then passes through b and ends just outside the circle on the left as shown in Figure 23a.

Figure 23b shows how buildcycle forms a closed cycle from pieces of paths aa and b. The
buildcycle macro detects the two intersections labeled 1 and 2 in Figure 23b. Then it constructs
the cyclic path shown in bold in the figure by going forward along path aa from intersection 1 to
intersection 2 and then forward around the counter-clockwise path b back to intersection 1. It turns
out that buildcycle(a,b) would have produced the same result, but the reasoning behind this is
a little confusing.

12

aa

b

(a)

12

aa

b

(b)

Figure 23: (a) The semicircular path aa with a dashed line marking path b; (b) paths aa and b with
the portions selected by buildcycle shown by heavy lines.

It is a easier to use the buildcycle macro in situations like Figure 24 where there are more than
two path arguments and each pair of consecutive paths has a unique intersection. For instance, the

7The setbounds and truecorners features are only found in MetaPost version 0.30 and higher.

A User’s Manual for MetaPost 26

line q0.5 and the curve p2 intersect only at point P ; and the curve p2 and the line q1.5 intersect
only at point Q. In fact, each of the points P , Q, R, S is a unique intersection, and the result of

buildcycle(q0.5, p2, q1.5, p4)

takes q0.5 from S to P , then p2 from P to Q, then q1.5 from Q to R, and finally p4 from R back
to S. An examination of the MetaPost code for Figure 24 reveals that you have to go backwards
along p2 in order to get from P to Q. This works perfectly well as long as the intersection points are
uniquely defined but it can cause unexpected results when pairs of paths intersect more than once.

beginfig(24);
h=2in; w=2.7in;
path p[], q[], pp;
for i=2 upto 4: ii:=i**2;

p[i] = (w/ii,h){1,-ii}...(w/i,h/i)...(w,h/ii){ii,-1};
endfor
q0.5 = (0,0)--(w,0.5h);
q1.5 = (0,0)--(w/1.5,h);
pp = buildcycle(q0.5, p2, q1.5, p4);
fill pp withcolor .7white;
z0=center pp;
picture lab; lab=thelabel(btex $f>0$ etex, z0);
unfill bbox lab; draw lab;
draw q0.5; draw p2; draw q1.5; draw p4;
dotlabel.top(btex P etex, p2 intersectionpoint q0.5);
dotlabel.rt(btex Q etex, p2 intersectionpoint q1.5);
dotlabel.lft(btex R etex, p4 intersectionpoint q1.5);
dotlabel.bot(btex S etex, p4 intersectionpoint q0.5);
endfig;

f > 0 P

Q

R

S

Figure 24: MetaPost code and the corresponding output.

The general rule for the buildcycle macro is that

buildcycle(p1, p2, p3, . . . ,pk)

chooses the intersection between each pi and pi+1 to be as late as possible on pi and as early as
possible on pi+1. There is no simple rule for resolving conflicts between these two goals, so you
should avoid cases where one intersection point occurs later on pi and another intersection point
occurs earlier on pi+1.

A User’s Manual for MetaPost 27

The preference for intersections as late as possible on pi and as early as possible on pi+1 leads to
ambiguity resolution in favor of forward-going subpaths. For cyclic paths such as path b in Figure 23
“early” and “late” are relative to a start/finish point which is where you get back to when you say
“..cycle”. For the path b, this turns out to be the rightmost point on the circle.

A more direct way to deal with path intersections is via the 〈secondary binop〉 intersection-
point that finds the points P , Q, R, and S in Figure 24. This macro finds a point where two
given paths intersect. If there is more than one intersection point, it just chooses one; if there is no
intersection, the macro generates an error message.

8.2 Dealing with Paths Parametrically

The intersectionpoint macro is based on a primitive operation called intersectiontimes. This
〈secondary binop〉 is one of several operations that deal with paths parametrically. It locates an
intersection between two paths by giving the “time” parameter on each path. This refers to the
parameterization scheme from Section 3 that described paths as piecewise cubic curves

(
X(t), Y (t)

)
where t ranges from zero to the number of curve segments. In other words, when a path is specified
as passing through a sequence of points, where t = 0 at the first point, then t = 1 at the next, and
t = 2 at the next, etc. The result of

a intersectiontimes b

is (−1,−1) if there is no intersection; otherwise you get a pair (ta, tb), where ta is a time on path a
when it intersects path b, and tb is the corresponding time on path b.

For example, suppose path a is denoted by the thin line in Figure 25 and path b is denoted by
the thicker line. If the labels indicate time values on the paths, the pair of time values computed by

a intersectiontimes b

must be one of
(0.25, 1.77), (0.75, 1.40), or (2.58, 0.24),

depending on which of the three intersection points is chosen by the MetaPost interpreter. The
exact rules for choosing among multiple intersection points are a little complicated, but it turns out
that you get the time values (0.25, 1.77) in this example. Smaller time values are preferred over
larger ones so that (ta, tb) is preferred to (t′a, t′b) whenever t′a < ta and tb < t′b. When no single
alternative minimizes both the ta and tb components the ta component tends to get priority, but
the rules get more complicated when there are no integers between ta and t′a. (For more details, see
The METAFONTbook.[4, Chapter 14])

0 1 2

3
0

12

Figure 25: Two intersecting paths with time values marked on each path.

The intersectiontimes operator is more flexible than intersectionpoint because there are
a number of things that can be done with time values on a path. One of the most important is just
to ask “where is path p at time t?” The construction

point 〈numeric expression〉 of 〈path primary〉

A User’s Manual for MetaPost 28

answers this question. If the 〈numeric expression〉 is less than zero or greater than the time value
assigned to the last point on the path, the point of construction normally yields an endpoint of
the path. Hence, it is common to use the predefined constant infinity (equal to 4095.99998) as
the 〈numeric expression〉 in a point of construction when dealing with the end of a path.

Such “infinite” time values do not work for a cyclic path, since time values outside of the normal
range can be handled by modular arithmetic in that case; i.e., a cyclic path p through points z0, z1,
z2, . . . , zn−1 has the normal parameter range 0 ≤ t < n, but

point t of p

can be computed for any t by first reducing t modulo n. If the modulus n is not readily available,

length 〈path primary〉

gives the integer value of the upper limit of the normal time parameter range for the specified path.

MetaPost uses the same correspondence between time values and points on a path to evaluate
the subpath operator. The syntax for this operator is

subpath 〈pair expression〉 of 〈path primary〉

If the value of the 〈pair expression〉 is (t1, t2) and the 〈path primary〉 is p, the result is a path that
follows p from point t1 of p to point t2 of p. If t2 < t1, the subpath runs backwards along p.

An important operation based on the subpath operator is the 〈tertiary binop〉 cutbefore. For
intersecting paths p1 and p2,

p1 cutbefore p2

is equivalent to

subpath (xpart(p1 intersectiontimes p2), length p1) of p1

except that it also sets the path variable cuttings to the portion of p1 that gets cut off. In other
words, cutbefore returns its first argument with the part before the intersection cut off. With
multiple intersections, it tries to cut off as little as possible. If the paths do not intersect, cutbefore
returns its first argument.

There is also an analogous 〈tertiary binop〉 called cutafter that works by applying cutbefore
with time reversed along its first argument. Thus

p1 cutafter p2

tries to cut off the part of p1 after its last intersection with p2.

Another operator

direction 〈numeric expression〉 of 〈path primary〉

finds a vector in the direction of the 〈path primary〉. This is defined for any time value analogously
to the point of construction. The resulting direction vector has the correct orientation and a
somewhat arbitrary magnitude. Combining point of and direction of constructions yields the
equation for a tangent line as illustrated in Figure 26.

If you know a slope and you want to find a point on a curve where the tangent line has that
slope, the directiontime operator inverts the direction of operation. Given a direction vector
and a path,

directiontime 〈pair expression〉 of 〈path primary〉

A User’s Manual for MetaPost 29

beginfig(26);
numeric scf, #, t[];
3.2scf = 2.4in;
path fun;
= .1; % Keep the function single-valued
fun = ((0,-1#)..(1,.5#){right}..(1.9,.2#){right}..{curl .1}(3.2,2#))
yscaled(1/#) scaled scf;

x1 = 2.5scf;
for i=1 upto 2:
(t[i],whatever) =

fun intersectiontimes ((x[i],-infinity)--(x[i],infinity));
z[i] = point t[i] of fun;
z[i]-(x[i+1],0) = whatever*direction t[i] of fun;
draw (x[i],0)--z[i]--(x[i+1],0);
fill fullcircle scaled 3bp shifted z[i];

endfor
label.bot(btex x_1 etex, (x1,0));
label.bot(btex x_2 etex, (x2,0));
label.bot(btex x_3 etex, (x3,0));
draw (0,0)--(3.2scf,0);
pickup pencircle scaled 1pt;
draw fun;
endfig;

x1x2x3

Figure 26: MetaPost code and the resulting figure

A User’s Manual for MetaPost 30

returns a numeric value that gives the first time t when the path has the indicated direction. (If
there is no such time, the result is −1). For example, if a is the path drawn as a thin curve in
Figure 25, directiontime (1,1) of a returns 0.2084.

There is also an predefined macro

directionpoint 〈pair expression〉 of 〈path primary〉

that finds the first point on a path where a given direction is achieved. The directionpoint macro
produces an error message if the direction does not occur on the path.

Operators arclength and arctime of relate the “time” on a path is related to the more familiar
concept of arc length.8 The expression

arclength 〈path primary〉

gives the arc length of a path. If p is a path and a is a number between 0 and arclength p,

arctime a of p

gives the time t such that

arclength subpath (0,t) of p = a.

8.3 Affine Transformations

Note how path fun in Figure 26 is first constructed as

(0,-.1)..(1,.05){right}..(1.9,.02){right}..{curl .1}(3.2,.2)

and then the yscaled and scaled operators are used to adjust the shape and size of the path. As
the name suggests, an expression involving “yscaled 10” multiplies y coordinates by ten so that
every point (x, y) on the original path corresponds to a point (x, 10y) on the transformed path.

Including scaled and yscaled, there are seven transformation operators that take a numeric or
pair argument:

(x, y) shifted (a, b) = (x + a, y + b);
(x, y) rotated θ = (x cos θ − y sin θ, x sin θ + y cos θ);
(x, y) slanted a = (x + ay, y);
(x, y) scaled a = (ax, ay);

(x, y) xscaled a = (ax, y);
(x, y) yscaled a = (x, ay);

(x, y) zscaled (a, b) = (ax − by, bx + ay).

Most of these operations are self-explanatory except for zscaled which can be thought of as multi-
plication of complex numbers. The effect of zscaled (a, b) is to rotate and scale so as to map (1, 0)
into (a, b). The effect of rotated θ is rotate θ degrees counter-clockwise.

Any combination of shifting, rotating, slanting, etc. is an affine transformation, the net effect of
which is to transform any pair (x, y) into

(tx + txxx + txyy, ty + tyxx + tyyy),

8The arclength and arctime operators are only found in MetaPost version 0.50 and higher.

A User’s Manual for MetaPost 31

for some sextuple (tx, ty, txx, txy, tyx, tyy). This information can be stored in a variable of type
transform so that transformed T might be equivalent to

xscaled -1 rotated 90 shifted (1,1)

if T is an appropriate transform variable. The transform T could then be initialized with an expression
of type transform as follows:

transform T;
T = identity xscaled -1 rotated 90 shifted (1,1);

As this example indicates, transform expressions can be built up by applying transformation opera-
tors to other transforms. The predefined transformation identity is a useful starting point for this
process. This can be illustrated by paraphrasing the above equation for T into English: “T should
be the transform obtained by doing whatever identity does, then scaling x coordinates by −1,
rotating 45◦, and shifting by (1, 1).” This works because identity is the identity transformation
which does nothing; i.e., transformed identity is a no-op.

The syntax for transform expressions and transformation operators is given in Figure 27. It
includes two more options for 〈transformer〉:

reflectededabout(p, q)

reflects about the line defined by points p and q; and

rotatedaround(p, θ)

rotates θ degrees counter-clockwise around point p. For example, the equation for initializing trans-
form T could have been

T = identity reflectedabout((2,0), (0,2)).

〈pair secondary〉 → 〈pair secondary〉〈transformer〉
〈path secondary〉 → 〈path secondary〉〈transformer〉
〈picture secondary〉 → 〈picture secondary〉〈transformer〉
〈pen secondary〉 → 〈pen secondary〉〈transformer〉
〈transform secondary〉 → 〈transform secondary〉〈transformer〉
〈transformer〉 → rotated〈numeric primary〉

| scaled〈numeric primary〉
| shifted〈pair primary〉
| slanted〈numeric primary〉
| transformed〈transform primary〉
| xscaled〈numeric primary〉
| yscaled〈numeric primary〉
| zscaled〈pair primary〉
| reflectedabout(〈pair expression〉,〈pair expression〉)
| rotatedaround(〈pair expression〉,〈numeric expression〉)

Figure 27: The syntax for transforms and related operators

There is also a unary operator inverse that takes a transform and finds another transform that
undoes the effect of the first transform. Thus if

p = q transformed T

A User’s Manual for MetaPost 32

then
q = p transformed inverse T.

It is not legal to take the inverse of an unknown transform but we have already seen that you
can say

T = 〈transform expression〉
when T has not been given a value yet. It is also possible to apply an unknown transform to a
known pair or transform and use the result in a linear equation. Three such equations are sufficient
to determine a transform. Thus the equations

(0,1) transformed T’ = (3,4);
(1,1) transformed T’ = (7,1);
(1,0) transformed T’ = (4,-3);

allow MetaPost to determine that the transform T’ is a combination of rotation and scaling with

txx = 4, tyx = −3,

tyx = 3, tyy = 4,

tx = 0, ty = 0.

Equations involving an unknown transform are treated as linear equations in the six parameters
that define the transform. These six parameters can also be referred to directly as

xpart T, ypart T, xxpart T, xypart T, yxpart T, yypart T,

where T is a transform. For instance, Figure 28 uses the equations

xxpart T=yypart T; yxpart T=-xypart T

to specify that T is shape preserving; i.e., it is a combination of rotating, shifting, and uniform
scaling.

8.4 Dashed Lines

The MetaPost language provides many ways of changing the appearance of a line besides just
changing its width. One way is to use dashed lines as was done in Figures 5 and 23. The syntax for
this is

draw 〈path expression〉 dashed 〈dash pattern〉
where a 〈dash pattern〉 is really a special type of 〈picture expression〉. There is a predefined 〈dash
pattern〉 called evenly that makes dashes 3 PostScript points long separated by gaps of the same
size. Another predefined dash pattern withdots produces dotted lines with dots 5 PostScript points
apart.9 For dots further apart or longer dashes further apart, the 〈dash pattern〉 can be scaled as
shown in Figure 29

Another way to change a dash pattern is to alter its phase by shifting it horizontally. Shifting
to the right makes the dashes move forward along the path and shifting to the left moves them
backward. Figure 30 illustrates this effect. The dash pattern can be thought of as an infinitely
repeating pattern strung out along a horizontal line where the portion of the line to the right of the
y axis is laid out along the path to be dashed.

When you shift a dash pattern so that the y axis crosses the middle of a dash, the first dash
gets truncated. Thus the line with dash pattern e4 starts with a dash of length 12bp followed by a

9withdots is only found in MetaPost version 0.50 and higher.

A User’s Manual for MetaPost 33

beginfig(28);
path p[];
p1 = fullcircle scaled .6in;
z1=(.75in,0)=-z3;
z2=directionpoint left of p1=-z4;
p2 = z1..z2..{curl1}z3..z4..{curl 1}cycle;
fill p2 withcolor .4[white,black];
unfill p1;
draw p1;
transform T;
z1 transformed T = z2;
z3 transformed T = z4;
xxpart T=yypart T; yxpart T=-xypart T;
picture pic;
pic = currentpicture;
for i=1 upto 2:
pic:=pic transformed T;
draw pic;

endfor
dotlabels.top(1,2,3); dotlabels.bot(4);
endfig;

1

2

3

4

Figure 28: MetaPost code and the resulting “fractal” figure

dashed evenly

dashed evenly scaled 2

dashed evenly scaled 4
dashed withdots

dashed withdots scaled 2

Figure 29: Dashed lines each labeled with the 〈dash pattern〉 used to create it.

0
2
4
6

1 draw z0..z1 dashed e4

3 draw z2..z3 dashed e4 shifted (6bp,0)

5 draw z4..z5 dashed e4 shifted (12bp,0)

7 draw z6..z7 dashed e4 shifted (18bp,0)

Figure 30: Dashed lines and the MetaPost statements for drawing them where e4 refers to the dash
pattern evenly scaled 4.

A User’s Manual for MetaPost 34

12bp gap and another 12bp dash, etc., while e4 shifted (-6bp,0) produces a 6bp dash, a 12 bp
gap, then a 12bp dash, etc. This dash pattern could be specified more directly via the dashpattern
function:

dashpattern(on 6bp off 12bp on 6bp)

This means “draw the first 6bp of the line, then skip the next 12bp, then draw another 6bp and
repeat.” If the line to be dashed is more than 30bp long, the last 6bp of the first copy of the dash
pattern will merge with the first 6bp of the next copy to form a dash 12bp long. The general syntax
for the dashpattern function is shown in Figure 31.

〈dash pattern〉 → dashpattern(〈on/off list〉)
〈on/off list〉 → 〈on/off list〉〈on/off clause〉 | 〈on/off clause〉
〈on/off clause〉 → on〈numeric tertiary〉 | off〈numeric tertiary〉

Figure 31: The syntax for the dashpattern function

Since a dash pattern is really just a special kind of picture, the dashpattern function returns
a picture. It is not really necessary to know the structure of such a picture, so the casual reader
will probably want to skip on to Section 8.5. For those who want to know, a little experimentation
shows that if d is

dashpattern(on 6bp off 12bp on 6bp),

then llcorner d is (0, 24) and urcorner d is (24, 24). Drawing d directly without using it as a
dash pattern produces two thin horizontal line segments like this:

The lines in this example are specified as having width zero, but this does not matter because the
line width is ignored when a picture is used as a dash pattern.

The general rule for interpreting a picture d as a dash pattern is that the line segments in d are
projected onto the x-axis and the resulting pattern is replicated to infinity in both directions by
placing copies of the pattern end-to-end. The actual dash lengths are obtained by starting at x = 0
and scanning in the positive x direction.

To make the idea of “replicating to infinity” more precise, let P (d) be the projection of d onto
the x axis, and let shift(P (d), x) be the result of shifting d by x. The pattern resulting from infinite
replication is ⋃

integers n

shift(P (d), n · �(d)),

where �(d) measures the length of P (d). The most restrictive possible definition of this length is
dmax − dmin, where [dmin, dmax] is the range of x coordinates in P (d). In fact, MetaPost uses

max(|y0(d)| , dmax − dmin),

where y0(d) is the y coordinate of the contents of d. The contents of d should lie on a horizontal
line, but if they do not, the MetaPost interpreter just picks a y coordinate that occurs in d.

A picture used as a dashed pattern must contain no text or filled regions, but it can contain lines
that are themselves dashed. This can give small dashes inside of larger dashes as shown in Figure 32

A User’s Manual for MetaPost 35

beginfig(32);
draw dashpattern(on 15bp off 15bp) dashed evenly;
picture p;
p=currentpicture;
currentpicture:=nullpicture;
draw fullcircle scaled 1cm xscaled 3 dashed p;
endfig;

Figure 32: MetaPost code and the corresponding output

8.5 Other Options

You might have noticed that the dashed lines produced by dashed evenly appear to have more
black than white. This is an effect of the linecap parameter that controls the appearance of the
ends of lines as well as the ends of dashes. There are also a number of other ways to affect the
appearance of things drawn with MetaPost.

The linecap parameter has three different settings just as in PostScript. Plain MetaPost gives
this internal variable the default value rounded which causes line segments to be drawn with rounded
ends like the segment from z0 to z3 in Figure 33. Setting linecap := butt cuts the ends off flush
so that dashes produced by dashed evenly have length 3bp, not 3bp plus the line width. You can
also get squared-off ends that extend past the specified endpoints by setting linecap := squared as
was done in the line from z2 to z5 in Figure 33.

beginfig(33);
for i=0 upto 2:
z[i]=(0,40i); z[i+3]-z[i]=(100,30);

endfor
pickup pencircle scaled 18;
draw z0..z3 withcolor .8white;
linecap:=butt;
draw z1..z4 withcolor .8white;
linecap:=squared;
draw z2..z5 withcolor .8white;
dotlabels.top(0,1,2,3,4,5);
endfig; linecap:=rounded;

0

1

2

3

4

5

Figure 33: MetaPost code and the corresponding output

Another parameter borrowed from PostScript affects the way a draw statement treats sharp
corners in the path to be drawn. The linejoin parameter can be rounded, beveled, or mitered
as shown in Figure 34. The default value for plain MetaPost is rounded which gives the effect of
drawing with a circular brush.

When linejoin is mitered, sharp corners generate long pointed features as shown in Figure 35.
Since this might be undesirable, there is an internal variable called miterlimit that controls how
extreme the situation can get before the mitered join is replaced by a beveled join. For Plain
MetaPost, miterlimit has a default value of 10.0 and line joins revert to beveled when the ratio of
miter length to line width reaches this value.

The linecap, linejoin, and miterlimit parameters are especially important because they also
affect things that get drawn behind the scenes. For instance, Plain MetaPost has statements for
drawing arrows, and the arrowheads are slightly rounded when linejoin is rounded. The effect
depends on the line width and is quite subtle at the default line width of 0.5bp as shown in Figure 36.

A User’s Manual for MetaPost 36

beginfig(34);
for i=0 upto 2:

z[i]=(0,50i); z[i+3]-z[i]=(60,40);
z[i+6]-z[i]=(120,0);

endfor
pickup pencircle scaled 24;
draw z0--z3--z6 withcolor .8white;
linejoin:=mitered;
draw z1..z4--z7 withcolor .8white;
linejoin:=beveled;
draw z2..z5--z8 withcolor .8white;
dotlabels.bot(0,1,2,3,4,5,6,7,8);
endfig; linejoin:=rounded;

0

1

2

3

4

5

6

7

8

Figure 34: MetaPost code and the corresponding output

miter length

line width

Figure 35: The miter length and line width whose ratio is limited by miterlimit.

1
3
5

2 drawarrow z1..z2

4 drawarrow reverse(z3..z4)

6 drawdblarrow z5..z6

Figure 36: Three ways of drawing arrows.

A User’s Manual for MetaPost 37

Drawing arrows like the ones in Figure 36 is simply a matter of saying

drawarrow 〈path expression〉

instead of draw 〈path expression〉. This draws the given path with an arrowhead at the last point
on the path. If you want the arrowhead at the beginning of the path, just use the unary operator
reverse to take the original path and make a new one with its time sense reversed; i.e., for a path p
with length p = n,

point t of reverse p and point n − t of p

are synonymous.

As shown in Figure 36, a statement beginning

drawdblarrow 〈path expression〉

draws a double-headed arrow. The size of the arrowhead is guaranteed to be larger than the line
width, but it might need adjusting if the line width is very great. This is done by assigning a new
value to the internal variable ahlength that determines arrowhead length as shown in Figure 37.
Increasing ahlength from the default value of 4 PostScript points to 1.5 centimeters produces the
large arrowhead in Figure 37. There is also an ahangle parameter that controls the angle at the tip
of the arrowhead. The default value of this angle is 45 degrees as shown in the figure.

ahlength

ahlength
ahangle

Figure 37: A large arrowhead with key parameters labeled and paths used to draw it marked with
white lines.

The arrowhead is created by filling the triangular region that is outlined in white in Figure 37 and
then drawing around it with the currently picked up pen. This combination of filling and drawing
can be combined into a single filldraw statement:

filldraw 〈path expression〉 〈optional dashed and withcolor and withpen clauses〉;

The 〈path expression〉 should be a closed cycle like the triangular path in Figure 37. This path
should not be confused with the path argument to drawarrow which is indicated by a white line in
the figure.

White lines like the ones in the figure can be created by an undraw statement. This is an erasing
version of draw that draws withcolor background just as the unfill statement does. There is also
an unfilldraw statement just in case someone finds a use for it.

The filldraw, undraw and unfilldraw statements and all the arrow drawing statements are like
the fill and draw statements in that they take dashed, withpen, and withcolor options. When
you have a lot of drawing statements it is nice to be able to apply an option such as withcolor
0.8white to all of them without having to type this repeatedly as was done in Figures 33 and 34.
The statement for this purpose is

drawoptions(〈text〉)

A User’s Manual for MetaPost 38

where the 〈text〉 argument gives a sequence of dashed, withcolor, and withpen options to be
applied automatically to all drawing statements. If you specify

drawoptions(withcolor .5[black,white])

and then want to draw a black line, you can override the drawoptions by specifying

draw 〈path expression〉 withcolor black

To turn off drawoptions all together, just give an empty list:

drawoptions()

(This is done automatically by the beginfig macro).

Since irrelevant options are ignored, there is no harm in giving a statement like

drawoptions(dashed evenly)

followed by a sequence of draw and fill commands. It does not make sense to use a dash pattern
when filling so the dashed evenly gets ignored for fill statements. It turns out that

drawoptions(withpen 〈pen expression〉)
does affect fill statements as well as draw statements. In fact there is a special pen variable called
currentpen such that fill . . . withpen currentpen is equivalent to a filldraw statement.

Precisely what does it mean to say that drawing options affect those statements where they make
sense? The dashed 〈dash pattern〉 option only affects

draw 〈path expression〉
statements, and text appearing in the 〈picture expression〉 argument to

draw 〈picture expression〉
statement is only affected by the withcolor 〈color expression〉 option. For all other combinations
of drawing statements and options, there is some effect. An option applied to a draw 〈picture
expression〉 statement will in general affect some parts of the picture but not others. For instance,
a dashed or withpen option will affect all the lines in the picture but none of the labels.

8.6 Pens

Previous sections have given numerous examples of pickup 〈pen expression〉 and withpen 〈pen
expression〉, but there have not been any examples of pen expressions other than

pencircle scaled 〈numeric primary〉
which produces lines of a specified width. For calligraphic effects such in Figure 38, you can apply any
of the transformation operators discussed in Section 8.3. The starting point for such transformations
is pencircle, a circle one PostScript point in diameter. Thus affine transformations produce a
circular or elliptical pen shape. The width of lines drawn with the pen depends on how nearly
perpendicular the line is to the long axis of the ellipse.

Figure 38 demonstrates operators lft, rt, top, and bot that answer the question, “If the current
pen is placed at the position given by the argument, where will its left, right, top, or bottom edge
be?” In this case the current pen is the ellipse given in the pickup statement and its bounding box

A User’s Manual for MetaPost 39

beginfig(38);
pickup pencircle scaled .2in yscaled .08 rotated 30;
x0=x3=x4;
z1-z0 = .45in*dir 30;
z2-z3 = whatever*(z1-z0);
z6-z5 = whatever*(z1-z0);
z1-z6 = 1.2*(z3-z0);
rt x3 = lft x2;
x5 = .55[x4,x6];
y4 = y6;
lft x3 = bot y5 = 0;
top y2 = .9in;
draw z0--z1--z2--z3--z4--z5--z6 withcolor .7white;
dotlabels.top(0,1,2,3,4,5,6);
endfig;

0

1

2
3

4
5

6

Figure 38: MetaPost code and the resulting “calligraphic” figure.

is 0.1734 inches wide and 0.1010 inches high, so rt x3 is x3+0.0867in and bot y5 is y5−0.0505in.
The lft, rt, top, and bot operators also accept arguments of type pair in which case they compute
the x and y coordinates of the leftmost, rightmost, topmost, or bottommost point on the pen shape.
For example,

rt(x, y) = (x, y) + (0.0867in, 0.0496in)

for the pen in Figure 38. Note that beginfig resets the current pen to a default value of

pencircle scaled 0.5bp

at the beginning of each figure. This value can be reselected at any time by giving the command
pickup defaultpen.

This would be the end of the story on pens, except that for compatibility with METAFONT,
MetaPost also allows pen shapes to be polygonal. There is a predefined pen called pensquare that
can be transformed to yield pens shaped like parallelograms. In fact, there is even an operator called
makepen that takes a convex-polygon-shaped path and makes a pen that shape and size. If the path
is not exactly convex or polygonal, the makepen operator will straighten the edges and/or drop some
of the vertices. In particular, pensquare is equivalent to

makepen((-.5,-.5)--(.5,-.5)--(.5,.5)--(-.5,.5)--cycle)

The inverse of makepen is the makepath operator that takes a 〈pen primary〉 and returns the
corresponding path. Thus makepath pencircle produces a circular path identical to fullcircle.
This also works for a polygonal pen so that

makepath makepen 〈path expression〉
will take any cyclic path and turn it into a convex polygon.

8.7 Clipping and Low-Level Drawing Commands

Drawing statements such as draw, fill, filldraw, and unfill are part of the Plain macro package
and are defined in terms of more primitive statements. The main difference between the drawing
statements discussed in previous sections and the more primitive versions is that the primitive

A User’s Manual for MetaPost 40

drawing statements all require you to specify a picture variable to hold the results. For fill, draw,
and related statements, the results always go to a picture variable called currentpicture. The
syntax for the primitive drawing statements that allow you to specify a picture variable is shown in
Figure 39.

〈addto command〉 →
addto〈picture variable〉also〈picture expression〉〈option list〉
| addto〈picture variable〉contour〈path expression〉〈option list〉
| addto〈picture variable〉doublepath〈path expression〉〈option list〉

〈option list〉 → 〈empty〉 | 〈drawing option〉〈option list〉
〈drawing option〉 → withcolor〈color expression〉

| withpen〈pen expression〉 | dashed〈picture expression〉

Figure 39: The syntax for primitive drawing statements

The syntax for primitive drawing commands is compatible with METAFONT. Table 2 shows how
the primitive drawing statements relate to the familiar draw and fill statements. Each of the
statements in the first column of the table could be ended with an 〈option list〉 of its own, which
is equivalent to appending the 〈option list〉 to the corresponding entry in the second column of the
table. For example,

draw p withpen pencircle

is equivalent to

addto currentpicture doublepath p withpen currentpen withpen pencircle

where currentpen is a special pen variable that always holds the last pen picked up. The second
withpen option silently overrides the withpen currentpen from the expansion of draw.

statement equivalent primitives
draw pic addto currentpicture also pic
draw p addto currentpicture doublepath p withpen q
fill c addto currentpicture contour c
filldraw c addto currentpicture contour c withpen q
undraw pic addto currentpicture also pic withcolor b
undraw p addto currentpicture doublepath p withpen q withcolor b
unfill c addto currentpicture contour c withcolor b
unfilldraw c addto currentpicture contour c withpen q withcolor b

Table 2: Common drawing statements and equivalent primitive versions, where q stands for
currentpen, b stands for background, p stands for any path, c stands for a cyclic path, and pic
stands for a 〈picture expression〉. Note that nonempty drawoptions would complicate the entries
in the second column.

There are two more primitive drawing commands that do not accept any drawing options. One
is the setbounds command that was discussed in Section 7.3; the other is the clip command:

clip 〈picture variable〉 to 〈path expression〉
Given a cyclic path, this statement trims the contents of the 〈picture variable〉 to eliminate everything
outside of the cyclic path. There is no “high level” version of this statement, so you have to use

clip currentpicture to 〈path expression〉

A User’s Manual for MetaPost 41

beginfig(40);
path p[];
p1 = (0,0){curl 0}..(5pt,-3pt)..{curl 0}(10pt,0);
p2 = p1..(p1 yscaled-1 shifted(10pt,0));
p0 = p2;
for i=1 upto 3: p0:=p0.. p2 shifted (i*20pt,0);

endfor
for j=0 upto 8: draw p0 shifted (0,j*10pt);

endfor
p3 = fullcircle shifted (.5,.5) scaled 72pt;
clip currentpicture to p3;
draw p3;
endfig;

Figure 40: MetaPost code and the resulting “clipped” figure.

if you want to clip currentpicture. Figure 40 illustrates clipping.

All the primitive drawing operations would be useless without one last operation called shipout.
The statement

shipout 〈picture expression〉
This writes out a picture as a PostScript file whose name ends .nnn, where nnn is the decimal repre-
sentation of the value of the internal variable charcode. (The name “charcode” is for compatibility
with METAFONT.) Normally, beginfig sets charcode, and endfig invokes shipout.

9 Macros

As alluded to earlier, MetaPost has a set of automatically included macros called the Plain macro
package, and some of the commands discussed in previous sections are defined as macros instead of
being built into MetaPost. The purpose of this section is to explain how to write such macros.

Macros with no arguments are very simple. A macro definition

def 〈symbolic token〉 = 〈replacement text〉 enddef
makes the 〈symbolic token〉 an abbreviation for the 〈replacement text〉, where the 〈replacement text〉
can be virtually any sequence of tokens. For example, the Plain macro package could almost define
the fill statement like this:

def fill = addto currentpicture contour enddef

Macros with arguments are similar, except they have formal parameters that tell how to use the
arguments in the 〈replacement text〉. For example, the rotatedaround macro is defined like this:

def rotatedaround(expr z, d) =
shifted -z rotated d shifted z enddef;

The expr in this definition means that formal parameters z and d can be arbitrary expressions.
(They should be pair expressions but the MetaPost interpreter does not immediately check for
that.)

Since MetaPost is an interpreted language, macros with arguments are a lot like subroutines.
MetaPost macros are often used like subroutines, so the language includes programming concepts
to support this. These concepts include local variables, loops, and conditional statements.

A User’s Manual for MetaPost 42

9.1 Grouping

Grouping in MetaPost is essential for functions and local variables. The basic idea is that a group is
a sequence of statements possibly followed by an expression with the provision that certain symbolic
tokens can have their old meanings restored at the end of the group. If the group ends with an
expression, the group behaves like a function call that returns that expression. Otherwise, the group
is just a compound statement. The syntax for a group is

begingroup 〈statement list〉 endgroup
or

begingroup 〈statement list〉 〈expression〉 endgroup
where a 〈statement list〉 is a sequence of statements each followed by a semicolon. A group with an
〈expression〉 after the 〈statement list〉 behaves like a 〈primary〉 in Figure 14 or like a 〈numeric atom〉
in Figure 15.

Since the 〈replacement text〉 for the beginfig macro starts with begingroup and the 〈replace-
ment text〉 for endfig ends with endgroup, each figure in a MetaPost input file behaves like a
group. This is what allows figures can have local variables. We have already seen in Section 6.2
that variable names beginning with x or y are local in the sense that they have unknown values at
the beginning of each figure and these values are forgotten at the end of each figure. The following
example illustrates how locality works:

x23 = 3.1;

beginfig(17);

...
y3a=1; x23=2;

...
endfig;

show x23, y3a;

The result of the show command is
>> 3.1
>> y3a

indicating that x23 has returned to its former value of 3.1 and y3a is completely unknown as it was
at beginfig(17).

The locality of x and y variables is achieved by the statement

save x,y

in the 〈replacement text〉 for beginfig. In general, variables are made local by the statement

save 〈symbolic token list〉
where 〈symbolic token list〉 is a comma-separated list of tokens:

〈symbolic token list〉 → 〈symbolic token〉
| 〈symbolic token〉,〈symbolic token list〉

All variables whose names begin with one of the specified symbolic tokens become unknown numerics
and their present values are saved for restoration at the end of the current group. If the save
statement is used outside of a group, the original values are simply discarded.

A User’s Manual for MetaPost 43

The main purpose of the save statement is to allow macros to use variables without interfering
with existing variables or variables in other calls to the same macro. For example, the predefined
macro whatever has the 〈replacement text〉

begingroup save ?; ? endgroup

This returns an unknown numeric quantity, but it is no longer called question mark since that name
was local to the group. Asking the name via show whatever yields

>> %CAPSULEnnnn

where nnnn is an identification number that is chosen when save makes the name question mark
disappear.

In spite of the versatility of save, it cannot be used to make local changes to any of MetaPost’s
internal variables. A statement such as

save linecap

would cause MetaPost to temporarily forget the special meaning of this variable and just make it
an unknown numeric. If you want to draw one dashed line with linecap:=butt and then go back
to the previous value, you can use the interim statement as follows:

begingroup interim linecap:=butt;

draw 〈path expression〉 dashed evenly; endgroup

This saves the value of the internal variable linecap and temporarily gives it a new value without
forgetting that linecap is an internal variable. The general syntax is

interim 〈internal variable〉 := 〈numeric expression〉

9.2 Parameterized Macros

The basic idea behind parameterized macros is to achieve greater flexibility by allowing auxiliary
information to be passed to a macro. We have already seen that macro definitions can have formal
parameters that represent expressions to be given when the macro is called. For instance a definition
such as

def rotatedaround(expr z, d) = 〈replacement text〉 enddef
allows the MetaPost interpreter to understand macro calls of the form

rotatedaround(〈expression〉,〈expression〉)

The keyword expr in the macro definition means that the parameters can be expressions of
any type. When the definition specifies (expr z, d), the formal parameters z and d behave like
variables of the appropriate types. Within the 〈replacement text〉, they can be used in expressions
just like variables, but they cannot be redeclared or assigned to. There is no restriction against
unknown or partially known arguments. Thus the definition

def midpoint(expr a, b) = (.5[a,b]) enddef

works perfectly well when a and b are unknown. An equation such as

midpoint(z1,z2) = (1,1)

A User’s Manual for MetaPost 44

could be used to help determine z1 and z2.

Notice that the above definition for midpoint works for numerics, pairs, or colors as long as both
parameters have the same type. If for some reason we want a middlepoint macro that works for a
single path or picture, it would be necessary to do an if test on the argument type. This uses the
fact there is a unary operator

path 〈primary〉
that returns a boolean result indicating whether its argument is a path. Since the basic if test has
the syntax

if 〈boolean expression〉: 〈balanced tokens〉 else: 〈balanced tokens〉 fi

where the 〈balanced tokens〉 can be anything that is balanced with respect to if and fi, the complete
middlepoint macro with type test looks like this:

def middlepoint(expr a) = if path a: (point .5*length a of a)
else: .5(llcorner a + urcorner a) fi enddef;

The complete syntax for if tests is shown in Figure 41. It allows multiple if tests like

if e1: . . . else: if e2: . . . else: . . . fi fi

to be shortened to
if e1: . . . elseif e2: . . . else: . . . fi

where e1 and e2 represent boolean expressions.

Note that if tests are not statements and the 〈balanced tokens〉 in the syntax rules can be any
sequence of balanced tokens even if they do not form a complete expression or statement. Thus we
could have saved two tokens at the expense of clarity by defining midpoint like this:

def midpoint(expr a) = if path a: (point .5*length a of
else: .5(llcorner a + urcorner fi a) enddef;

〈if test〉 → if〈boolean expression〉:〈balanced tokens〉〈alternatives〉fi
〈alternatives〉 → 〈empty〉

| else:〈balanced tokens〉
| elseif〈boolean expression〉:〈balanced tokens〉〈alternatives〉

Figure 41: The syntax for if tests.

The real purpose of macros and if tests is to automate repetitive tasks and allow important
subtasks to be solved separately. For example, Figure 42 uses macros draw_marked, mark_angle,
and mark_rt_angle to mark lines and angles that appear in the figure.

The task of the draw_marked macro is to draw a path with a given number of cross marks
near its midpoint. A convenient starting place is the subproblem of drawing a single cross mark
perpendicular to a path p at some time t. The draw_mark macro in Figure 43 does this by first
finding a vector dm perpendicular to p at t. To simplify positioning the cross mark, the draw_marked
macro is defined to take an arc length a along p and use the arctime operator to compute t

With the subproblem of drawing a single mark out of the way, the draw_marked macro only needs
to draw the path and call draw_mark with the appropriate arc length values. The draw_marked macro
in Figure 43 uses n equally-spaced a values centered on .5*arclength p.

A User’s Manual for MetaPost 45

beginfig(42);
pair a,b,c,d;
b=(0,0); c=(1.5in,0); a=(0,.6in);
d-c = (a-b) rotated 25;
dotlabel.lft("a",a);
dotlabel.lft("b",b);
dotlabel.bot("c",c);
dotlabel.llft("d",d);
z0=.5[a,d];
z1=.5[b,c];
(z.p-z0) dotprod (d-a) = 0;
(z.p-z1) dotprod (c-b) = 0;
draw a--d;
draw b--c;
draw z0--z.p--z1;
draw_marked(a--b, 1);
draw_marked(c--d, 1);
draw_marked(a--z.p, 2);
draw_marked(d--z.p, 2);
draw_marked(b--z.p, 3);
draw_marked(c--z.p, 3);
mark_angle(z.p, b, a, 1);
mark_angle(z.p, c, d, 1);
mark_angle(z.p, c, b, 2);
mark_angle(c, b, z.p, 2);
mark_rt_angle(z.p, z0, a);
mark_rt_angle(z.p, z1, b);
endfig;

a

b c

d

Figure 42: MetaPost code and the corresponding figure

A User’s Manual for MetaPost 46

marksize=4pt;

def draw_mark(expr p, a) =
begingroup
save t, dm; pair dm;
t = arctime a of p;
dm = marksize*unitvector direction t of p
rotated 90;

draw (-.5dm.. .5dm) shifted point t of p;
endgroup

enddef;

def draw_marked(expr p, n) =
begingroup
save amid;
amid = .5*arclength p;
for i=-(n-1)/2 upto (n-1)/2:
draw_mark(p, amid+.6marksize*i);

endfor
draw p;
endgroup

enddef;

Figure 43: Macros for drawing a path p with n cross marks.

Since draw_marked works for curved lines, it can be used to draw the arcs that the mark_angle
macro generates. Given points a, b, and c that define a counter-clockwise angle at b, the mark_angle
needs to generate a small arc from segment ba to segment bc. The macro definition in Figure 44
does this by creating an arc p of radius one and then computing a scale factor s that makes it big
enough to see clearly.

The mark_rt_angle macro is much simpler. It takes a generic right-angle corner and uses the
zscaled operator to rotate it and scale it as necessary.

9.3 Suffix and Text Parameters

Macro parameters need not always be expressions as in the previous examples. Replacing the
keyword expr with suffix or text in a macro definition declares the parameters to be variable
names or arbitrary sequences of tokens. For example, there is a predefined macro called hide that
takes a text parameter and interprets it as a sequence of statements while ultimately producing an
empty 〈replacement text〉. In other words, hide executes its argument and then gets the next token
as if nothing happened. Thus

show hide(numeric a,b; a+b=3; a-b=1) a;

prints “>> 2.”

If the hide macro were not predefined, it could be defined like this:

def ignore(expr a) = enddef;
def hide(text t) = ignore(begingroup t; 0 endgroup) enddef;

The statements represented by the text parameter t would be evaluated as part of the group that
forms the argument to ignore. Since ignore has an empty 〈replacement text〉, expansion of the
hide macro ultimately produces nothing.

A User’s Manual for MetaPost 47

angle_radius=8pt;

def mark_angle(expr a, b, c, n) =
begingroup
save s, p; path p;
p = unitvector(a-b){(a-b)rotated 90}..unitvector(c-b);
s = .9marksize/length(point 1 of p - point 0 of p);
if s<angle_radius: s:=angle_radius; fi
draw_marked(p scaled s shifted b, n);
endgroup

enddef;

def mark_rt_angle(expr a, b, c) =
draw ((1,0)--(1,1)--(0,1))

zscaled (angle_radius*unitvector(a-b)) shifted b
enddef;

Figure 44: Macros for marking angles.

Another example of a predefined macro with a text parameter is dashpattern. The definition
of dashpattern starts

def dashpattern(text t) =
begingroup save on, off;

then it defines on and off to be macros that create the desired picture when the text parameter t
appears in the replacement text.

Text parameters are very general, but their generality sometimes gets in the way. If you just
want to pass a variable name to a macro, it is better to declare it as a suffix parameter. For example,

def incr(suffix $) = begingroup $:=$+1; $ endgroup enddef;

defines a macro that will take any numeric variable, add one to it, and return the new value. Since
variable names can be more than one token long,

incr(a3b)

is perfectly acceptable if a3b is a numeric variable. Suffix parameters are slightly more general than
variable names because the definition in Figure 16 allows a 〈suffix〉 to start with a 〈subscript〉.

Figure 45 shows how suffix and expr parameters can be used together. The getmid macro takes
a path variable and creates arrays of points and directions whose names are obtained by appending
mid, off, and dir to the path variable. The joinup macro takes arrays of points and directions and
creates a path of length n that passes through each pt[i] with direction d[i] or −d[i].

A definition that starts

def joinup(suffix pt, d)(expr n) =

might suggest that calls to the joinup macro should have two sets of parentheses as in

joinup(p.mid, p.dir)(36)

instead of
joinup(p.mid, p.dir, 36)

A User’s Manual for MetaPost 48

def getmid(suffix p) =
pair p.mid[], p.off[], p.dir[];
for i=0 upto 36:
p.dir[i] = dir(5*i);
p.mid[i]+p.off[i] = directionpoint p.dir[i] of p;
p.mid[i]-p.off[i] = directionpoint -p.dir[i] of p;

endfor
enddef;

def joinup(suffix pt, d)(expr n) =
begingroup
save res, g; path res;
res = pt[0]{d[0]};
for i=1 upto n:
g:= if (pt[i]-pt[i-1]) dotprod d[i] <0: - fi 1;
res := res{g*d[i-1]}...{g*d[i]}pt[i];

endfor
res
endgroup

enddef;

beginfig(45)
path p, q;
p = ((5,2)...(3,4)...(1,3)...(-2,-3)...(0,-5)...(3,-4)

...(5,-3)...cycle) scaled .3cm shifted (0,5cm);
getmid(p);
draw p;
draw joinup(p.mid, p.dir, 36)..cycle;
q = joinup(p.off, p.dir, 36);
draw q..(q rotated 180)..cycle;
drawoptions(dashed evenly);
for i=0 upto 3:
draw p.mid[9i]-p.off[9i]..p.mid[9i]+p.off[9i];
draw -p.off[9i]..p.off[9i];

endfor
endfig;

Figure 45: MetaPost code and the corresponding figure

A User’s Manual for MetaPost 49

In fact, both forms are acceptable. Parameters in a macro call can be separated by commas or by
)(pairs. The only restriction is that a text parameter must be followed by a right parenthesis. For
instance, a macro foo with one text parameter and one expr parameter can be called

foo(a,b)(c)

in which case the text parameter is “a,b” and the expr parameter is c, but

foo(a,b,c)

sets the text parameter to “a,b,c” and leaves the MetaPost interpreter still looking for the expr
parameter.

9.4 Vardef Macros

A macro definition can begin with vardef instead of def. Macros defined in this way are called
vardef macros. They are particularly well-suited to applications where macros are being used like
functions or subroutines. The main idea is that a vardef macro is like a variable of type “macro.”

Instead of def 〈symbolic token〉, a vardef macro begins

vardef 〈generic variable〉

where a 〈generic variable〉 is a variable name with numeric subscripts replaced by the generic sub-
script symbol []. In other words, the name following vardef obeys exactly the same syntax as the
name given in a variable declaration. It is a sequence of tags and generic subscript symbols starting
with a tag, where a tag is a symbolic token that is not a macro or a primitive operator as explained
in Section 6.2.

The simplest case is when the name of a vardef macro consists of a single tag. Under such
circumstances, def and vardef provide roughly the same functionality. The most obvious difference
is that begingroup and endgroup are automatically inserted at the beginning and end of the 〈re-
placement text〉 of every vardef macro. This makes the 〈replacement text〉 a group so that a vardef
macro behaves like a subroutine or a function call.

Another property of vardef macros is that they allow multi-token macro names and macro names
involving generic subscripts. When a vardef macro name has generic subscripts, numeric values have
to be given when the macro is called. After a macro definition

vadef a[]b(expr p) = 〈replacement text〉 enddef;

a2b((1,2)) and a3b((1,2)..(3,4)) are macro calls. But how can the 〈replacement text〉 tell the
difference between a2b and a3b? Two implicit suffix parameters are automatically provided for this
purpose. Every vardef macro has suffix parameters #@ and @, where @ is the last token in the name
from the macro call and #@ is everything preceding the last token. Thus #@ is a2 when the name is
given as a2b and a3 when the name is given as a3b.

Suppose, for example, that the a[]b macro is to take its argument and shift it by an amount
that depends on the macro name. The macro could be defined like this:

vardef a[]b(expr p) = p shifted (#@,b) enddef;

Then a2b((1,2)) means (1,2) shifted (a2,b) and a3b((1,2)..(3,4)) means

((1,2)..(3,4)) shifted (a3,b).

A User’s Manual for MetaPost 50

If the macro had been a.b[], #@ would always be a.b and the @ parameter would give the
numeric subscript. Then a@ would refer to an element of the array a[]. Note that @ is a suffix
parameter, not an expr parameter, so an expression like @+1 would be illegal. The only way to
get at the numeric values of subscripts in a suffix parameter is by extracting them from the string
returned by the str operator. This operator takes a suffix and returns a string representation of a
suffix. Thus str @ would be "3" in a.b3 and "3.14" in a.b3.14 or a.b[3.14]. Since the syntax
for a 〈suffix〉 in Figure 16 requires negative subscripts to be in brackets, str @ returns "[-3]" in
a.b[-3].

The str operator is generally for emergency use only. It is better to use suffix parameters only
as variable names or suffixes. The best example of a vardef macro involving suffixes is the z macro
that defines the z convention. The definition involves a special token @# that refers to the suffix
following the macro name:

vardef z@#=(x@#,y@#) enddef;

This means that any variable name whose first token is z is equivalent to a pair of variables whose
names are obtained by replacing z with x and y. For instance, z.a1 calls the z macro with the suffix
parameter @# set to a1.

In general,
vardef 〈generic variable〉@#

is an alternative to vardef 〈generic variable〉 that causes the MetaPost interpreter to look for a
suffix following the name given in the macro call and makes this available as the @# suffix parameter.

To summarize the special features of vardef macros, they allow a broad class of macro names as
well as macro names followed by a special suffix parameter. Furthermore, begingroup and endgroup
are automatically added to the 〈replacement text〉 of a vardef macro. Thus using vardef instead of
def to define the joinup macro in Figure 45 would have avoided the need to include begingroup
and endgroup explicitly in the macro definition.

In fact, most of the macro definitions given in previous examples could equally well use vardef
instead of def. It usually does not matter very much which you use, but a good general rule is
to use vardef if you intend the macro to be used like a function or a subroutine. The following
comparison should help in deciding when to use vardef.

• Vardef macros are automatically surrounded by begingroup and endgroup.

• The name of a vardef macro can be more than one token long and it can contain subscripts.

• A vardef macro can have access to the suffix that follows the macro name when the macro is
called.

• When a symbolic token is used in the name of a vardef macro it remains a tag and can still
be used in other variable names. Thus p5dir is a legal variable name even though dir is a
vardef macro, but an ordinary macro such as ... cannot be used in a variable name. (This is
fortunate since z5...z6 is supposed to be a path expression, not an elaborate variable name).

9.5 Defining Unary and Binary Macros

It has been mentioned several times that some of the operators and commands discussed so far
are actually predefined macros. These include unary operators such as round and unitvector,
statements such as fill and draw, and binary operators such as dotprod and intersectionpoint.
The main difference between these macros and the ones we already know how to define is their
argument syntax.

A User’s Manual for MetaPost 51

The round and unitvector macros are examples of what Figure 14 calls 〈unary op〉. That is,
they are followed by a primary expression. To specify a macro argument of this type, the macro
definition should look like this:

vardef round primary u = 〈replacement text〉 enddef;
The u parameter is an expr parameter and it can be used exactly like the expr parameter defined
using the ordinary

(expr u)

syntax.

As the round example suggests, a macro can be defined to take a 〈secondary〉, 〈tertiary〉, or an
〈expression〉 parameter. For example, the predefined definition of the fill macro is roughly

def fill expr c = addto currentpicture contour c enddef;

It is even possible to define a macro to play the role of 〈of operator〉 in Figure 14. For example,
the direction of macro has a definition of this form:

vardef direction expr t of p = 〈replacement text〉 enddef;

Macros can also be defined to behave like binary operators. For instance, the definition of the
dotprod macro has the form

primarydef w dotprod z = 〈replacement text〉 enddef;
This makes dotprod a 〈primary binop〉. Similarly, secondarydef and tertiarydef introduce 〈sec-
ondary binop〉 and 〈tertiary binop〉 definitions. These all define ordinary macros, not vardef macros;
e.g., there is no “primaryvardef.”

Thus macro definitions can be introduced by def, vardef, primarydef, secondarydef, or
tertiarydef. A 〈replacement text〉 is any list of tokens that is balanced with respect to def-
enddef pairs where all five macro definition tokens are treated like def for the purpose of def-enddef
matching.

The rest of the syntax for macro definitions is summarized in Figure 46. The syntax contains
a few surprises. The macro parameters can have a 〈delimited part〉 and an 〈undelimited part〉.
Normally, one of these is 〈empty〉, but it is possible to have both parts nonempty:

def foo(text a) expr b = 〈replacement text〉 enddef;
This defines a macro foo to take a text parameter in parentheses followed by an expression.

The syntax also allows the 〈undelimited part〉 to specify an argument type of suffix or text.
An example of a macro with an undelimited suffix parameter is the predefined macro incr that is
actually defined like this:

vardef incr suffix $ = $:=$+1; $ enddef;

This makes incr a function that takes a variable, increments it, and returns the new value. Un-
delimited suffix parameters may be parenthesized, so incr a and incr(a) are both legal if a is a
numeric variable. There is also a similar predefined macro decr that subtracts 1.

Undelimited text parameters run to the end of a statement. More precisely, an undelimited text
parameter is the list of tokens following the macro call up to the first “;” or “endgroup” or “end”
except that an argument containing “begingroup” will always include the matching “endgroup.”

A User’s Manual for MetaPost 52

〈macro definition〉 → 〈macro heading〉=〈replacement text〉 enddef
〈macro heading〉 → def 〈symbolic token〉〈delimited part〉〈undelimited part〉

| vardef 〈generic variable〉〈delimited part〉〈undelimited part〉
| vardef 〈generic variable〉@#〈delimited part〉〈undelimited part〉
| 〈binary def〉〈parameter〉〈symbolic token〉〈parameter〉

〈delimited part〉 → 〈empty〉
| 〈delimited part〉(〈parameter type〉〈parameter tokens〉)

〈parameter type〉 → expr | suffix | text
〈parameter tokens〉 → 〈parameter〉 | 〈parameter tokens〉,〈parameter〉
〈parameter〉 → 〈symbolic token〉
〈undelimited part〉 → 〈empty〉

| 〈parameter type〉〈parameter〉
| 〈precedence level〉〈parameter〉
| expr 〈parameter〉 of 〈parameter〉

〈precedence level〉 → primary | secondary | tertiary
〈binary def〉 → primarydef | secondarydef | tertiatydef

Figure 46: The syntax for macro definitions

An example of an undelimited text parameter comes from the predefined macro cutdraw whose
definition is roughly

def cutdraw text t =
begingroup interim linecap:=butt; draw t; endgroup enddef;

This makes cutdraw synonymous with draw except for the linecap value. (This macro is provided
mainly for compatibility with METAFONT.)

10 Loops

Numerous examples in previous sections have used simple for loops of the form

for 〈symbolic token〉 = 〈expression〉 upto 〈expression〉 : 〈loop text〉 endfor
It is equally simple to construct a loop that counts downward: just replace upto by downto make
the second 〈expression〉 smaller than the first. This section covers more complicated types of pro-
gressions, loops where the loop counter behaves like a suffix parameter, and ways of exiting from a
loop.

The first generalization is suggested by the fact that upto is a predefined macro for

step 1 until

and downto is a macro for step -1 until. A loop begining

for i=a step b until c

scans a sequence of i values a, a + b, a + 2b, . . . , stopping before i passes c; i.e., the loop scans i
values where i ≤ c if b > 0 and i ≥ c if i < 0.

It is best to use this feature only when the step size is an integer or some number that can be
represented exactly in fixed point arithmetic as a multiple of 1

65536 . Otherwise, error will accumulate
and the loop index might not reach the expected termination value. For instance,

for i=0 step .1 until 1: show i; endfor

A User’s Manual for MetaPost 53

shows ten i values the last of which is 0.90005.

The standard way of avoid the problems associated with non-integer step sizes is to iterate over
integer values and then multiply by a scale factor when using the loop index as was done in Figures
2 and 40.

Alternatively, the values to iterate over can be given explicitly. Any sequence of zero or more
expressions separated by commas can be used in place of a step b upto c. In fact, the expressions
need not all be the same type and they need not have known values. Thus

for t=3.14, 2.78, (a,2a), "hello": show a; endfor

shows the four values listed.

Note that the loop body in the above example is a statement followed by a semicolon. It is
common for the body of a loop to be one or more statements, but this need not be the case. A
loop is like a macro definition followed by calls to the macro. The loop body can be virtually any
sequence of tokens as long as they make sense together. Thus, the (ridiculous) statement

draw for p=(3,1),(6,2),(7,5),(4,6),(1,3): p-- endfor cycle;

is equivalent to
draw (3,1)--(6,2)--(7,5)--(4,6)--(1,3)--cycle;

(See Figure 18 for a more realistic example of this.)

If a loop is like a macro definition, the loop index is like an expr parameter. It can represent any
value, but it is not a variable and it cannot be changed by an assignment statement. In order to do
that, you need a forsuffixes loop. A forsuffixes loop is a lot like a for loop, except the loop
index behaves like a suffix parameter. The syntax is

forsuffixes 〈symbolic token〉 = 〈suffix list〉 : 〈loop text〉 endfor
where a 〈suffix list〉 is a comma-separated list of suffixes. If some of the suffixes are 〈empty〉, the
〈loop text〉 gets executed with the loop index parameter set to the empty suffix.

A good example of a forsuffixes loop is the definition of the dotlabels macro:

vardef dotlabels@#(text t) =
forsuffixes $=t: dotlabel@#(str$,z$); endfor enddef;

This should make it clear why the parameter to dotlabels has to be a comma-separated list
of suffixes. Most macros that accept variable-length comma-separated lists use them in for or
forsuffixes loops in this fashion as values to iterate over.

When there are no values to iterate over, you can use a forever loop:

forever: 〈loop text〉 endfor
To terminate such a loop when a boolean condition becomes true, use an exit clause:

exitif 〈boolean expression〉;
When the MetaPost interpreter encounters an exit clause, it evaluates the 〈boolean expression〉 and
exits the current loop if the expression is true. If it is more convenient to exit the loop when an
expression becomes false, use the predefined macro exitunless.

Thus MetaPost’s version of a while loop is

forever: exitunless 〈boolean expression〉; 〈loop text〉 endfor

A User’s Manual for MetaPost 54

The exit clause could equally well come just before endfor or anywhere in the 〈loop text〉. In fact
any for, forever, or forsuffixes loop can contain any number of exit clauses.

The summary of loop syntax shown in Figure 47 does not mention exit clauses explicitly because
a 〈loop text〉 can be virtually any sequence of tokens. The only restriction is that a 〈loop text〉 must
be balanced with respect to for and endfor. Of course this balancing process treats forsuffixes
and forever just like for.

〈loop〉 → 〈loop header〉: 〈loop text〉endfor
〈loop header〉 → for 〈symbolic token〉 = 〈progression〉

| for 〈symbolic token〉 = 〈for list〉
| forsuffixes 〈symbolic token〉 = 〈suffix list〉
| forever

〈progression〉 → 〈numeric expression〉 upto 〈numeric expression〉
| 〈numeric expression〉 downto 〈numeric expression〉
| 〈numeric expression〉 step 〈numeric expression〉 until 〈numeric expression〉

〈for list〉 → 〈expression〉 | 〈for list〉, 〈expression〉
〈suffix list〉 → 〈suffix〉 | 〈suffix list〉, 〈suffix〉

Figure 47: The syntax for loops

11 Making Boxes

This section describes auxiliary macros not included in Plain MetaPost that make it convenient to
do things that pic is good at [3] . What follows is a description of how to use the macros contained
in the file boxes.mp. This file is included in a special directory reserved for MetaPost macros and
support software10 and can be accessed by giving the MetaPost command input boxes before any
figures that use the box making macros. The syntax for the input command is

input 〈file name〉
where a final “.mp” can be omitted from the file name. The input command looks first in the
current directory and then in the special macro directory. Users interested in writing macros may
want to look at the boxes.mp file in this directory.

11.1 Rectangular Boxes

The main idea of the box-making macros is that one should say

boxit.〈suffix〉(〈picture expression〉)
where the 〈suffix〉 does not start with a subscript.11 This creates pair variables 〈suffix〉.c, 〈suffix〉.n,
〈suffix〉.e, . . . that can then be used for positioning the picture before drawing it with a separate
command such as

drawboxed(〈suffix list〉)
The argument to drawboxed should be a comma-separated list of box names, where a box name is
a 〈suffix〉 with which boxit has been called.

10The name of this directory is likely to be something like /usr/lib/mp/lib, but this is system dependent.
11Some early versions of the box making macros did not allow any subscripts in the boxit suffix.

A User’s Manual for MetaPost 55

For the command boxit.bb(pic), the box name is bb and the contents of the box is the picture
pic. In this case, bb.c the position where the center of picture pic is to be placed, and bb.sw,
bb.se, bb.ne, and bb.nw are the corners of a rectangular path that will surround the resulting
picture. Variables bb.dx and bb.dy give the spacing between the shifted version of pic and the
surrounding rectangle, and bb.off is the amount by which pic has to be shifted to achieve all this.

When the boxit macro is called with box name b, it gives linear equations that force b.sw, b.se,
b.ne, and b.nw to be the corners of a rectangle aligned on the x and y axes with the box contents
centered inside as indicated by the gray rectangle in Figure 48. The values of b.dx, b.dy, and b.c
are left unspecified so that the user can give equations for positioning the boxes. If no such equations
are given, macros such as drawboxed can detect this and give default values. The default values for
dx and dy variables are controlled by the internal variables defaultdx and defaultdy.

n

c

s

ne

e

se

nw

w

sw

dy

dy

dxdx

Figure 48: The relationship between the picture given to boxit and the associated variables. The
picture is indicated by a gray rectangle.

If b represents a box name, drawboxed(b) draws the rectangular boundary of box b and then the
contents of the box. This bounding rectangle can be accessed separately as bpath b, or in general

bpath 〈box name〉
It is useful in combination with operators like cutbefore and cutafter in order to control paths
that enter the box. For example, if a and b are box names and p is a path from a.c to b.c,

drawarrow p cutbefore bpath a cutafter bpath b

draws an arrow from the edge of box a to the edge of box b.

Figure 49 shows a practical example including some arrows drawn with cutafter bpath 〈box
name〉. It is instructive to compare Figure 49 to the similar figure in the pic manual [3] . The figure
uses a macro

boxjoin(〈equation text〉)
to control the relationship between consecutive boxes. Within the 〈equation text〉, a and b represent
the box names given in consecutive calls to boxit and the 〈equation text〉 gives equations to control
the relative sizes and positions of the boxes.

For example, the second line of input for the above figure contains

boxjoin(a.se=b.sw; a.ne=b.nw)

This causes boxes to line up horizontally by giving additional equations that are invoked each time
some box a is followed by some other box b. These equations are first invoked on the next line when
box a is followed by box ni. This yields

a.se=ni.sw; a.ne=ni.nw

A User’s Manual for MetaPost 56

input boxes
beginfig(49);
boxjoin(a.se=b.sw; a.ne=b.nw);
boxit.a(btex\strut\cdots etex); boxit.ni(btex\strutn_i etex);
boxit.di(btex\strutd_i etex); boxit.ni1(btex\strutn_{i+1} etex);
boxit.di1(btex\strutd_{i+1} etex); boxit.aa(btex\strut\cdots etex);
boxit.nk(btex\strutn_k etex); boxit.dk(btex\strutd_k etex);
drawboxed(di,a,ni,ni1,di1,aa,nk,dk); label.lft("ndtable:", a.w);
interim defaultdy:=7bp;
boxjoin(a.sw=b.nw; a.se=b.ne);
boxit.ba(); boxit.bb(); boxit.bc();
boxit.bd(btex \vdots etex); boxit.be(); boxit.bf();
bd.dx=8bp; ba.ne=a.sw-(15bp,10bp);
drawboxed(ba,bb,bc,bd,be,bf); label.lft("hashtab:",ba.w);
vardef ndblock suffix $ =
boxjoin(a.sw=b.nw; a.se=b.ne);
forsuffixes $$=$1,$2,$3: boxit$$(); ($$dx,$$dy)=(5.5bp,4bp);
endfor; enddef;

ndblock nda; ndblock ndb; ndblock ndc;
nda1.c-bb.c = ndb1.c-nda3.c = (whatever,0);
xpart ndb3.se = xpart ndc1.ne = xpart di.c;
ndc1.c - be.c = (whatever,0);
drawboxed(nda1,nda2,nda3, ndb1,ndb2,ndb3, ndc1,ndc2,ndc3);
drawarrow bb.c -- nda1.w;
drawarrow be.c -- ndc1.w;
drawarrow nda3.c -- ndb1.w;
drawarrow nda1.c{right}..{curl0}ni.c cutafter bpath ni;
drawarrow nda2.c{right}..{curl0}di.c cutafter bpath di;
drawarrow ndc1.c{right}..{curl0}ni1.c cutafter bpath ni1;
drawarrow ndc2.c{right}..{curl0}di1.c cutafter bpath di1;
drawarrow ndb1.c{right}..nk.c cutafter bpath nk;
drawarrow ndb2.c{right}..dk.c cutafter bpath dk;
x.ptr=xpart aa.c; y.ptr=ypart ndc1.ne;
drawarrow subpath (0,.7) of (z.ptr..{left}ndc3.c) dashed evenly;
label.rt(btex \strut ndblock etex, z.ptr); endfig;

di· · · ni ni+1 di+1 · · · nk dkndtable:

...

hashtab:

ndblock

Figure 49: MetaPost code and the corresponding figure

A User’s Manual for MetaPost 57

The next pair of boxes is box ni and box di. This time the implicitly generated equations are

ni.se=di.sw; ni.ne=di.nw

This process continues until a new boxjoin is given. In this case the new declaration is

boxjoin(a.sw=b.nw; a.se=b.ne)

which causes boxes to be stacked below each other.

After calling boxit for the first eight boxes a through dk, the box heights are constrained to
match but the widths are still unknown. Thus the drawboxed macro needs to assign default values
to the 〈box name〉.dx and 〈box name〉.dy variables. First, di.dx and di.dy get default values so
that all the boxes are forced to be large enough to contain the contents of box di.

The macro that actually assigns default values to dx and dy variables is called fixsize. It takes
a list of box names and considers them one at a time, making sure that each box has a fixed size
and shape. A macro called fixpos then takes this same list of box names and assigns default values
to the 〈box name〉.off variables as needed to fix the position of each box. By using fixsize to fix
the dimensions of each box before assigning default positions to any of them, the number of needing
default positions can usually be cut to at most one.

Since the bounding path for a box cannot be computed until the size, shape, and position of the
box is determined, the bpath macro applies fixsize and fixpos to its argument. Other macros
that do this include

pic 〈box name〉
where the 〈box name〉 is a suffix, possibly in parentheses. This returns the contents of the named
box as a picture positioned so that

draw pic〈box name〉
draws the box contents without the bounding rectangle. This operation can also be accomplished by
the drawunboxed macro that takes a comma-separated list of box names. There is also a drawboxes
macro that draws just the bounding rectangles.

Another way to draw empty rectangles is by just saying

boxit〈box name〉()
with no picture argument as is done several times in Figure 49. This is like calling boxit with an
empty picture. Alternatively the argument can be a string expression instead of a picture expression
in which case the string is typeset in the default font.

11.2 Circular and Oval Boxes

Circular and oval boxes are a lot like rectangular boxes except for the shape of the bounding path.
Such boxes are set up by the circleit macro:

circleit〈box name〉(〈box contents〉)
where 〈box name〉 is a suffix and 〈box contents〉 is either a picture expression, a string expression,
or 〈empty〉.

The circleit macro defines pair variable just as boxit does, except that there are no corner
points 〈box name〉.ne, 〈box name〉.sw, etc. A call to

circleit.a(. . .)

A User’s Manual for MetaPost 58

n

c

s

ew

dy

dy

dxdx

Figure 50: The relationship between the picture given to circleit and the associated variables.
The picture is indicated by a gray rectangle.

gives relationships among points a.c, a.s, a.e, a.n, a.w and distances a.dx and a.dy. Together
with a.c and a.off, these variables describe how the picture is centered in an oval as can be seen
from the Figure 50.

The drawboxed, drawunboxed, drawboxes, pic, and bpath macros work for circleit boxes
just as they do for boxit boxes. By default, the boundary path for a circleit box is a circle large
enough to surround the box contents with a small safety margin controlled by the internal variable
circmargin. Figure 51 gives a basic example of the use of bpath with circleit boxes.

vardef drawshadowed(text t) =
fixsize(t);
forsuffixes s=t:
fill bpath.s shifted (1pt,-1pt);
unfill bpath.s;
drawboxed(s);

endfor
enddef;

beginfig(51)
circleit.a(btex Box 1 etex);
circleit.b(btex Box 2 etex);
b.n = a.s - (0,20pt);
drawshadowed(a,b);
drawarrow a.s -- b.n;
endfig;

Box 1

Box 2

Figure 51: MetaPost code and the resulting figure. Note that the drawshadowed macro used here is
not part of the boxit.mp macro package.

A full example of circleit boxes appears in Figure 52. The oval boundary paths around “Start”
and “Stop” are due to the equations

aa.dx=aa.dy; and ee.dx=ee.dy

after

circleit.ee(btex\strut Stop etex) and circleit.ee(btex\strut Stop etex).

The general rule is that bpath.c comes out circular if c.dx, c.dy, and c.dx− c.dy are all unknown.
Otherwise, the macros select an oval big enough to contain the given picture with the safety margin
circmargin.

A User’s Manual for MetaPost 59

vardef cuta(suffix a,b) expr p =
drawarrow p cutbefore bpath.a cutafter bpath.b;
point .5*length p of p

enddef;

vardef self@# expr p =
cuta(@#,@#) @#.c{curl0}..@#.c+p..{curl0}@#.c enddef;

beginfig(52);
verbatimtex \def\stk#1#2{$\displaystyle{\matrix{#1\cr#2\cr}}$} etex
circleit.aa(btex\strut Start etex); aa.dx=aa.dy;
circleit.bb(btex \stk B{(a|b)^*a} etex);
circleit.cc(btex \stk C{b^*} etex);
circleit.dd(btex \stk D{(a|b)^*ab} etex);
circleit.ee(btex\strut Stop etex); ee.dx=ee.dy;
numeric hsep;
bb.c-aa.c = dd.c-bb.c = ee.c-dd.c = (hsep,0);
cc.c-bb.c = (0,.8hsep);
xpart(ee.e - aa.w) = 3.8in;
drawboxed(aa,bb,cc,dd,ee);
label.ulft(btexbetex, cuta(aa,cc) aa.c{dir50}..cc.c);
label.top(btexbetex, self.cc(0,30pt));
label.rt(btexaetex, cuta(cc,bb) cc.c..bb.c);
label.top(btexaetex, cuta(aa,bb) aa.c..bb.c);
label.llft(btexaetex, self.bb(-20pt,-35pt));
label.top(btexbetex, cuta(bb,dd) bb.c..dd.c);
label.top(btexbetex, cuta(dd,ee) dd.c..ee.c);
label.lrt(btexaetex, cuta(dd,bb) dd.c..{dir140}bb.c);
label.bot(btexaetex, cuta(ee,bb) ee.c..tension1.3 ..{dir115}bb.c);
label.urt(btexbetex, cuta(ee,cc) ee.c{(cc.c-ee.c)rotated-15}..cc.c);
endfig;

Start B
(a|b)∗a

C
b∗

D
(a|b)∗ab

Stop

b

b

a

a

a

b b

a

a

b

Figure 52: MetaPost code and the corresponding figure

A User’s Manual for MetaPost 60

12 Debugging

MetaPost inherits from METAFONT numerous facilities for interactive debugging, most of which can
only be mentioned briefly here. Further information on error messages, debugging, and generating
tracing information can be found in The METAFONTbook [4] .

Suppose your input file says
draw z1--z2;

on line 17 without first giving known values to z1 and z2. Figure 53 shows what the MetaPost
interpreter prints on your terminal when it finds the error. The actual error message is the line
beginning with “!”; the next six lines give the context that shows exactly what input was being
read when the error was found; and the “?” on last line is a prompt for your response. Since the
error message talks about an undefined x coordinate, this value is printed on the first line after the
“>>”. In this case the x coordinate of z1 is just the unknown variable x1, so the interpreter prints
the variable name x1 just as it would if it were told to “show x1” at this point.

>> x1
! Undefined x coordinate has been replaced by 0.
<to be read again>

{
--->{

curl1}..{curl1}
l.17 draw z1--

z2;
?

Figure 53: An example of an error message.

The context listing may seem a little confusing at first, but it really just gives a few lines of text
showing how much of each line has been read so far. Each line of input is printed on two lines like
this:

〈descriptor〉 Text read so far
Text yet to be read

The 〈descriptor〉 identifies the input source. It is either a line number like “l.17” for line 17 of
the current file; or it can be a macro name followed by “->”; or it is a descriptive phrase in angle
brackets. Thus, the meaning of the context listing in Figure 53 is that the interpreter has just read
line 17 of the input file up to “--,” the expansion of the -- macro has just started, and the initial
“{” has been reinserted to allow for user input before scanning this token.

Among the possible responses to a ? prompt are the following:

x terminates the run so that you can fix you input file and start over.

h prints a help message followed by another ? prompt.

〈return〉 causes the interpreter to proceed as best it can.

? prints a listing of the options available, followed by another ? prompt.

Error messages and responses to show commands are also written into the transcript file whose
name is obtained from the name of the main input file by changing “.mp” to “.log”. When the

A User’s Manual for MetaPost 61

internal variable tracingonline is at its default value of zero, some show commands print their
results in full detail only in transcript file.

Only one type of show command has been discussed so far: show followed by a comma-separated
list of expressions prints symbolic representations of the expressions.

The showtoken command can be used to show the parameters and replacement text of a macro.
It takes a comma-separated list of tokens and identifies each one. If the token is a primative as in
“showtoken +” it is just identified as being itself:

> +=+

Applying showtoken to a variable or a vardef macro yields

> 〈token〉=variable

To get more information about a variable, use showvariable instead of showtoken. The argu-
ment to showvariable is a comma-separated list of symbolic tokens and the result is a description
of all the variables whose names begin with one of the listed tokens. This even works for vardef
macros. For example, showvariable z yields

z@#=macro:->begingroup(x(SUFFIX2),y(SUFFIX2))endgroup

There is also a showdependencies command that takes no arguments and prints a list of all
dependent variables and how the linear equations given so far make them depend on other variables.
Thus after

z2-z1=(5,10); z1+z2=(a,b);

showdependencies prints what is shown in Figure 54. This could be useful in answering a question
like “What does it mean ‘! Undefined x coordinate?’ I thought the equations given so far would
determine x1.”

x2=0.5a+2.5
y2=0.5b+5
x1=0.5a-2.5
y1=0.5b-5

Figure 54: The result of z2-z1=(5,10); z1+z2=(a,b); showdependencies;

When all else fails, the predefined macro tracingall causes the interpreter to print a detailed
listing of everything it is doing. Since the tracing information is often quite voluminous, it may be
better to use the loggingall macro that produces the same information but only writes it in the
transcript file. There is also a tracingnone macro that turns off all the tracing output.

Tracing output is controlled by the set of internal variables summarized below. When any one
of these variables is given a positive value, the corresponding form of tracing is turned on. Here is
the set of tracing variables and what happens when each of them is positive:

tracingcapsules shows the values of temporary quantities (capsules) when they become known.

tracingchoices shows the Bézier control points of each new path when they are chosen.

tracingcommands shows the commands before they are performed. A setting > 1 also shows if
tests and loops before they are expanded; a setting > 2 shows algebraic operations before
they are performed.

A User’s Manual for MetaPost 62

tracingequations shows each variable when it becomes known.

tracinglostchars warns about characters omitted from a picture because they are not in the font
being used to typeset labels.

tracingmacros shows macros before they are expanded.

tracingoutput shows pictures as they are being shipped out as PostScript files.

tracingrestores shows symbols and internal variables as they are being restored at the end of a
group.

tracingspecs shows the outlines generated when drawing with a polygonal pen.

tracingstats shows in the transcript file at the end of the job how many of the MetaPost inter-
preter’s limited rescources were used.

Acknowledgement

I would like to thank Don Knuth for making this work possible by developing METAFONT and
placing it in the public domain. I am also indebted to him for helpful suggestions, particularly with
regard to the treatment of included TEX material.

A Reference Manual

Tables 3–11 summarize the built-in features of Plain Metapost and the features defined in the
boxes.mp macro file. As explained in Section 11, the boxes.mp macro file is not automatically
preloaded and the macros defined there are not accessible until you ask for them via the command

input boxes

Features that depend on boxes.mp are marked by ‡ symbols. Features from the Plain macro
package are marked are marked by † symbols, and MetaPost primitives are not marked by ‡ or †.
The distinction between primitives and plain macros can be ignored by the casual user, but it is
important to remember that features marked by a ‡ can only be used after reading in the boxes.mp
macro file.

The tables in this appendix give the name each feature, the page number where it is explained,
and a short description. A few features are not explained elsewhere and have no page number
listed. These features exist primarily for compatibility with METAFONT and are intended to be
self-explanatory. Certain other features from METAFONT are omitted entirely because they are of
limited interest to the MetaPost users and/or would require long explanations. All of these are
documented in The METAFONTbook [4] as explained in Appendix B.

Table 3 lists internal variables that take on numeric values. Table 4 lists predefined variables of
other types. Table 5 lists predefined constants. Some of these are implemented as variables whose
values are intended to be left unchanged.

Tables 6–9 summarize MetaPost operators and list the possible argument and result types for each
one. A “–” entry for the left argument indicates a unary operator; “–” entries for both arguments
indicate a nullary operator. Operators that take suffix parameters are not listed in these tables
because they are treated as “function-like macros”.

A User’s Manual for MetaPost 63

The last two tables are Table 10 for commands and Table 11 macros that behave like functions
or procedures. Such macros take parenthesized argument lists and/or suffix parameters, returning
either a value whose type is listed in the table, or nothing. The latter case is for macros that behave
like procedures. Their return values are listed as “–”.

The figures in this appendix present the syntax of the MetaPost language starting with expres-
sions in Figures 55–57. Although the productions sometimes specify types for expressions, primaries,
secondaries, and tertiaries, no attempt is made to give separate syntaxes for 〈numeric expression〉,
〈pair expression〉, etc. The simplicity of the productions in Figure 58 is due to this lack of type
information. Type information can be found in Tables 3–11.

Figures 59 and 60 give the syntax for MetaPost programs, including statements and commands.
They do not mention loops and if tests because these constructions do not behave like statements.
The syntax given in Figures 55–11 applies to the result of expanding all conditionals and loops.
Conditionals and loops do have a syntax, but they deal with almost arbitrary sequences of tokens.
Figure 61 specifies conditionals in terms of 〈balanced tokens〉 and loops in terms of 〈loop text〉,
where 〈balanced tokens〉 is any sequence of tokens balanced with respect to if and fi, and 〈loop
text〉 is a sequence of tokens balanced with respect to for, forsuffixes, forever, and endfor.

A User’s Manual for MetaPost 64

Table 3: Internal variables with numeric values

Name Page Explanation
†ahangle 37 angle for arrowheads in degrees (default: 45)
†ahlength 37 size of arrowheads (default: 4bp)
†bboxmargin 22 extra space allowed by bbox (default 2bp)
charcode 41 the number of the next character to be output
‡circmargin 58 clearance around contents of a circular or oval box
day – the current day of the month
‡defaultdx 55 usual horizontal space around box contents (default 3bp)
‡defaultdy 55 usual vertical space around box contents (default 3bp)
†defaultpen 39 numeric index used by pickup to select default pen
†defaultscale 20 font scale factor for label strings (default 1)
†labeloffset 19 offset distance for labels (default 3bp)
linecap 35 0 for butt, 1 for round, 2 for square
linejoin 35 0 for mitered, 1 for round, 2 for beveled
miterlimit 35 controls miter length as in PostScript
month – the current month (e.g, 3 ≡ March)
pausing – > 0 to display lines on the terminal before they are read
prologues 22 > 0 to output conforming PostScript using built-in fonts
showstopping – > 0 to stop after each show command
time – the number of minutes past midnight when this job started
tracingcapsules 61 > 0 to show capsules too
tracingchoices 61 > 0 to show the control points chosen for paths
tracingcommands 61 > 0 to show commands and operations as they are performed
tracingequations 62 > 0 to show each variable when it becomes known
tracinglostchars 62 > 0 to show characters that aren’t infont
tracingmacros 62 > 0 to show macros before they are expanded
tracingonline 12 > 0 to show long diagnostics on the terminal
tracingoutput 62 > 0 to show digitized edges as they are output
tracingrestores 62 > 0 to show when a variable or internal is restored
tracingspecs 62 > 0 to show path subdivision when using a polygonal a pen
tracingstats 62 > 0 to show memory usage at end of job
tracingtitles – > 0 to show titles online when they appear
truecorners 23 > 0 to make llcorner etc. ignore setbounds
warningcheck 12 controls error message when variable value is large
year – the current year (e.g., 1992)

A User’s Manual for MetaPost 65

Table 4: Other Predefined Variables

Name Type Page Explanation
†background color 25 Color for unfill and undraw (usually white)
†currentpen pen 40 Last pen picked up (for use by the draw command)
†currentpicture picture 40 Accumulate results of draw and fill commands
†cuttings path 28 subpath cut off by last cutbefore or cutafter
†defaultfont string 19 Font used by label commands for typesetting strings
†extra beginfig string 81 Commands for beginfig to scan
†extra endfig string 81 Commands for endfig to scan

A User’s Manual for MetaPost 66

Table 5: Predefined Constants

Name Type Page Explanation
†beveled numeric 35 linejoin value for beveled joins [2]
†black color 12 Equivalent to (0,0,0)
†blue color 12 Equivalent to (0,0,1)
†bp numeric 2 One PostScript point in bp units [1]
†butt numeric 35 linecap value for butt end caps [0]
†cc numeric – One cicero in bp units [12.79213]
†cm numeric 2 One centimeter in bp units [28.34645]
†dd numeric – One didot point in bp units [1.06601]
†ditto string – The " character as a string of length 1
†down pair 6 Downward direction vector (0,−1)
†epsilon numeric – Smallest positive MetaPost number [1

65536]
†evenly picture 32 Dash pattern for equal length dashes
false boolean 13 The boolean value false
†fullcircle path 23 Circle of diameter 1 centered on (0, 0)
†green color 12 Equivalent to (0,1,0)
†halfcircle path 23 Upper half of a circle of diameter 1
†identity transform 31 Identity transformation
†in numeric 2 One inch in bp units [72]
†infinity numeric 28 Large positive value [4095.99998]
†left pair 6 Leftward direction (−1, 0)
†mitered numeric 35 linejoin value for mitered joins [0]
†mm numeric 2 One millimeter in bp units [2.83464]
nullpicture picture 14 Empty picture
†origin pair – The pair (0, 0)
†pc numeric – One pica in bp units [11.95517]
pencircle pen 38 Circular pen of diameter 1
†pensquare pen 39 square pen of height 1 and width 1
†pt numeric 2 One printer’s point in bp units [0.99626]
†quartercircle path – First quadrant of a circle of diameter 1
†red color 12 Equivalent to (1,0,0)
†right pair 6 Rightward direction (1, 0)
†rounded numeric 35 linecap and linejoin value for round joins

and end caps [1]
†squared numeric 35 linecap value for square end caps [2]
true boolean 13 The boolean value true
†unitsquare path – The path (0,0)--(1,0)--(1,1)--(0,1)--cycle
†up pair 6 Upward direction (0, 1)
†white color 12 Equivalent to (1,1,1)
†withdots picture 32 Dash pattern that produces dotted lines

A User’s Manual for MetaPost 67

Table 6: Operators (Part 1)

Name Argument/result types Page Explanation
Left Right Result

& string string string 14 Concatenation—works for paths l&r if
path path path r starts exactly where the l ends

* numeric color color 13 Multiplication
numeric numeric
pair pair

* color numeric color 13 Multiplication
numeric numeric
pair pair

** numeric numeric numeric 13 Exponentiation
+ color color color 13 Addition

numeric numeric numeric
pair pair pair

++ numeric numeric numeric 14 Pythagorean addition
√

l2 + r2

+-+ numeric numeric numeric 14 Pythagorean subtraction
√

l2 − r2

- color color color 13 Subtraction
numeric numeric numeric
pair pair pair

- – color color 13 Negation
numeric numeric
pair pair

/ color numeric color 13 Division
numeric numeric
pair pair

< = > string string boolean 13 Comparison operators
<= >= numeric numeric
<> pair pair

color color
transform transform

†abs – numeric numeric 15 Absolute value
pair

and boolean boolean boolean 13 Logical and
angle – pair numeric 15 2−argument arctangent (in degrees)
arclength – path numeric 30 Arc length of a path
arctime numeric path numeric 30 Time on a path where arclength from
of the start reaches a given value
ASCII – string numeric – ASCII value of first character in string
†bbox – picture path 22 A rectangular path for the bounding

path box
pen

bluepart – color numeric 16 Extracts the third component
boolean – any boolean 16 Is the expression of type boolean?
bot – numeric numeric 38 Bottom of current pen when centered

pair pair at the given coordinate(s)
†ceiling – numeric numeric 15 Least integer greater than or equal to
†center – picture pair 22 Center of the bounding box

path
pen

A User’s Manual for MetaPost 68

Table 7: Operators (Part 2)

Name Argument/result types Page Explanation
Left Right Result

char – numeric string 22 Character with a given ASCII code
color – any boolean 16 Is the expression of type color?
cosd – numeric numeric 15 Cosine of angle in degrees
†cutafter path path path 28 Left argument with part after the

intersection dropped
†cutbefore path path path 28 Left argument with part before the

intersection dropped
cycle – path boolean 15 Determines whether a path is cyclic
decimal – numeric string 15 The decimal representation
†dir – numeric pair 6 (cos θ, sin θ) given θ in degrees
†direction numeric path pair 28 The direction of a path at a given
of ‘time’

†direction- pair path numeric 30 Point where a path has a given
point of direction
direction- pair path numeric 28 ‘Time’ when a path has a given
time of direction
†div numeric numeric numeric – Integer division 	l/r

†dotprod pair pair numeric 13 vector dot product
floor – numeric numeric 15 Greatest integer less than or equal to
fontsize – string numeric 20 The point size of a font
greenpart – color numeric 16 Extract the second component
hex – string numeric – Interpret as a hexadecimal number
infont string string picture 22 Typeset string in given font
†intersec- path path pair 27 An intersection point
tionpoint
intersec- path path pair 27 Times (tl, tr) on paths l and r
tiontimes when the paths intersect
†inverse – transform transform 31 Invert a transformation
known – any boolean 16 Does argument have a known value?
length – path numeric 28 Number of arcs in a path
†lft – numeric numeric 38 Left side of current pen when its

pair pair center is at the given coordinate(s)
llcorner – picture pair 22 Lower-left corner of bounding box

path
pen

lrcorner – picture pair 22 Lower-left corner of bounding box
path
pen

makepath – pen path 39 Cyclic path bounding the pen shape
makepen – path pen 39 A polygonal pen made from the

convex hull of the path knots
mexp – numeric numeric – The function exp(x/256)
mlog – numeric numeric – The function 256 ln(x)
†mod – numeric numeric – The remainder function l − r	l/r

normal- – – numeric – Choose a random number with
deviate mean 0 and standard deviation 1

A User’s Manual for MetaPost 69

Table 8: Operators (Part 3)

Name Argument/result types Page Explanation
Left Right Result

not – boolean boolean 13 Logical negation
numeric – any boolean 16 Is the expression of type numeric?
oct – string numeric – Interpret a string as an octal number
odd – numeric boolean – Is the closest integer odd or even?
or boolean boolean boolean 13 Logical inclusive or
pair – any boolean 16 Is the expression of type pair?
path – any boolean 16 Is the expression of type path?
pen – any boolean 16 Is the expression of type pen?
penoffset pair pen pair – Point on the pen furthest to the
of right of the given direction
picture – any boolean 16 Is the expression of type picture?
point of numeric path pair 27 Point on a path given a time value
postcontrol numeric path pair – First Bézier control point on path
of segment starting at the given time
precontrol numeric path pair – Last Bézier control point on path
of segment ending at the given time
redpart – color numeric 16 Extract the first component
reverse – path path 37 ‘time’-reversed path with beginning

swapped with ending
rotated picture numeric picture 30 Rotate counterclockwise a given

path path number of degrees
pair pair
pen pen
transform transform

†round – numeric numeric 15 round each component to the nearest
pair pair integer

†rt – numeric numeric 38 Right side of current pen when
pair pair centered at given coordinate(s)

scaled picture numeric picture 30 Scale all coordinates by the given
path path amount
pair pair
pen pen
transform transform

shifted picture pair picture 30 Add the given shift amount to each
path path pair of coordinates
pair pair
pen pen
transform transform

sind – numeric numeric 15 Sine of an angle in degrees
slanted picture numeric picture 30 Apply the slanting transformation

path path that maps (x, y) into (x + sy, y),
pair pair where s is the numeric argument
pen pen
transform transform

sqrt – numeric numeric 15 Square root
str – suffix string 50 String representation for a suffix

A User’s Manual for MetaPost 70

Table 9: Operators (Part 4)

Name Argument/result types Page Explanation
Left Right Result

string – any boolean 16 Is the expression of type string?
subpath pair path path 28 Portion of a path for given range
of of time values
substring pair string string 14 Substring bounded by given indices
of
†top – numeric numeric 38 Top of current pen when centered

pair pair at the given coordinate(s)
transform – any boolean 16 Is the argument of type transform?
transformed picture transform picture 31 Apply the given transform to all

path path coordinates
pair pair
pen pen
transform transform

ulcorner – picture pair 22 Upper-left corner of bounding box
path
pen

uniform- – numeric numeric – Random number between zero and
deviate the value of the argument
†unitvector – pair pair 15 Rescale a vector so its length is 1
unknown – any boolean 16 Is the value unknown?
urcorner – picture pair 22 Upper-left corner of bounding box

path
pen

†whatever – – numeric 10 Create a new anonymous unknown
xpart – pair number 16 x or tx component

transform
xscaled picture numeric picture 30 Scale all x coordinates by the

path path given amount
pair pair
pen pen
transform transform

xxpart – transform number 32 txx entry in transformation matrix
xypart – transform number 32 txy entry in transformation matrix
ypart – pair number 16 y or ty component

transform
yscaled picture numeric picture 30 Scale all y coordinates by the

path path given amount
pair pair
pen pen
transform transform

yxpart – transform number 32 tyx entry in transformation matrix
yypart – transform number 32 tyy entry in transformation matrix
zscaled picture pair picture 30 Rotate and scale all coordinates so

path path that (1, 0) is mapped into the
pair pair given pair; i.e., do complex
pen pen multiplication.
transform transform

A User’s Manual for MetaPost 71

Table 10: Commands

Name Page Explanation
addto 40 Low-level command for drawing and filling
clip 40 Applies a clipping path to a picture
†cutdraw 52 Draw with butt end caps
†draw 3 Draw a line or a picture
†drawarrow 37 Draw a line with an arrowhead at the end
†drawdblarrow 37 Draw a line with arrowheads at both ends
†fill 23 Fill inside a cyclic path
†filldraw 37 Draw a cyclic path and fill inside it
interim 43 Make a local change to an internal variable
let – Assign one symbolic token the meaning of another
†loggingall 61 Turn on all tracing (log file only)
newinternal 18 Declare new internal variables
†pickup 13 Specify new pen for line drawing
save 42 Make variables local
setbounds 23 Make a picture lie about its bounding box
shipout 41 Low-level command to output a figure
show 12 print out expressions symbolically
showdependencies 61 print out all unsolved equations
showtoken 61 print an explanation of what a token is
showvariable 61 print variables symbolically
special 81 print a string directly in the PostScript output file
†tracingall 61 Turn on all tracing
†tracingnone 61 Turn off all tracing
†undraw 37 Erase a line or a picture
†unfill 25 Erase inside a cyclic path
†unfilldraw 37 Erase a cyclic path and its inside

A User’s Manual for MetaPost 72

Table 11: Function-Like Macros

Name Arguments Result Page Explanation
‡boxit suffix, picture – 54 Define a box containing the picture
‡boxit suffix, string – 57 Define a box containing text
‡boxit suffix, 〈empty〉 – 57 Define an empty box
‡boxjoin equations – 55 Give equations for connecting boxes
‡bpath suffix path 55 A box’s bounding circle or rectangle
†buildcycle list of paths path 25 Build a cyclic path
‡circleit suffix, picture – 57 Put picture in a circular box
‡circleit suffix, picture – 57 Put a string in a circular box
‡circleit suffix, 〈empty〉 – 57 Define an empty circular box
†dashpattern on/off distances picture 34 Create a pattern for dashed lines
†decr numeric variable numeric 51 Decrement and return new value
†dotlabel suffix, picture, pair – 19 Mark point and draw picture nearby
†dotlabel suffix, string, pair – 19 Mark point and place text nearby
†dotlabels suffix, point numbers – 19 Mark z points with their numbers
‡drawboxed list of suffixes – 54 Draw the named boxes and their

contents
‡drawboxes list of suffixes – 57 Draw the named boxes
†drawoptions drawing options – ?? Set options for drawing commands
‡drawunboxed list of suffixes – 57 Draw contents of named boxes
‡fixpos list of suffixes – 57 Solve for the size and position of the

named boxes
‡fixsize list of suffixes – 57 Solve for size of named boxes
†incr numeric variable numeric 51 Increment and return new value
†label suffix, picture, pair – 18 Draw picture near given point
†label suffix, string, pair – 18 Place text near given point
†labels suffix, point numbers – 19 Draw z point numbers; no dots
†max list of numerics numeric – Find the maximum
†max list of strings string – Find the lexicographically last string
†min list of numerics numeric – Find the minimum
†min list of strings string – Find the lexicographically first string
‡pic suffix picture 57 Box contents shifted into position
†thelabel suffix, picture, pair picture 19 Picture shifted as if to label a point
†thelabel suffix, string, pair picture 19 text positioned as if to label a point
†z suffix pair 17 The pair x〈suffix〉, y〈suffix〉)

A User’s Manual for MetaPost 73

〈atom〉 → 〈variable〉 | 〈argument〉
| 〈number or fraction〉
| 〈internal variable〉
| (〈expression〉)
| begingroup〈statement list〉〈expression〉endgroup
| 〈nullary op〉
| btex〈typesetting commands〉etex
| 〈pseudo function〉

〈primary〉 → 〈atom〉
| (〈numeric expression〉,〈numeric expression〉)
| (〈numeric expression〉,〈numeric expression〉,〈numeric expression〉)
| 〈of operator〉〈expression〉of〈primary〉
| 〈unary op〉〈primary〉
| str〈suffix〉
| z〈suffix〉
| 〈numeric atom〉[〈expression〉,〈expression〉]
| 〈scalar multiplication op〉〈primary〉

〈secondary〉 → 〈primary〉
| 〈secondary〉〈primary binop〉〈primary〉
| 〈secondary〉〈transformer〉

〈tertiary〉 → 〈secondary〉
| 〈tertiary〉〈secondary binop〉〈secondary〉

〈subexpression〉 → 〈tertiary〉
| 〈path expression〉〈path join〉〈path knot〉

〈expression〉 → 〈subexpression〉
| 〈expression〉〈tertiary binop〉〈tertiary〉
| 〈path subexpression〉〈direction specifier〉
| 〈path subexpression〉〈path join〉cycle

〈path knot〉 → 〈tertiary〉
〈path join〉 → −−

| 〈direction specifier〉〈basic path join〉〈direction specifier〉
〈direction specifier〉 → 〈empty〉

| {curl〈numeric expression〉}
| {〈pair expression〉}
| {〈numeric expression〉,〈numeric expression〉}

〈basic path join〉 → .. | ... | ..〈tension〉.. | ..〈controls〉..
〈tension〉 → tension〈numeric primary〉

| tension〈numeric primary〉and〈numeric primary〉
〈controls〉 → controls〈pair primary〉

| controls〈pair primary〉and〈pair primary〉

〈argument〉 → 〈symbolic token〉
〈number or fraction〉 → 〈number〉/〈number〉

| 〈number not followed by ‘/〈number〉’〉
〈scalar multiplication op〉 → + | −

| 〈‘〈number or fraction〉’ not followed by ‘〈add op〉〈number〉’〉

Figure 55: Part 1 of the syntax for expressions

A User’s Manual for MetaPost 74

〈transformer〉 → rotated〈numeric primary〉
| scaled〈numeric primary〉
| shifted〈pair primary〉
| slanted〈numeric primary〉
| transformed〈transform primary〉
| xscaled〈numeric primary〉
| yscaled〈numeric primary〉
| zscaled〈pair primary〉
| reflectedabout(〈pair expression〉,〈pair expression〉)
| rotatedaround(〈pair expression〉,〈numeric expression〉)

〈nullary op〉 → false | normaldeviate | nullpicture | pencircle
| true | whatever

〈unary op〉 → 〈type〉
| abs | angle | arclength | ASCII | bbox | bluepart | bot | ceiling
| center | char | cosd | cycle | decimal | dir | floor | fontsize
| greenpart | hex | inverse | known | length | lft | llcorner
| lrcorner | makepath | makepen | mexp | mlog | not | oct | odd
| redpart | reverse | round | rt | sind | sqrt | top | ulcorner
| uniformdeviate | unitvector | unknown | urcorner | xpart | xxpart
| xypart | ypart | yxpart | yypart

〈type〉 → boolean | color | numeric | pair
| path | pen | picture | string | transform

〈primary binop〉 → * | / | ** | and
| dotprod | div | infont | mod

〈secondary binop〉 → + | − | + + | + − + | or
| intersectionpoint | intersectiontimes

〈tertiary binop〉 → & | < | <= | <> | = | > | >=
| cutafter | cutbefore

〈of operator〉 → arctime | direction | directiontime | directionpoint
| penoffset | point | postcontrol | precontrol | subpath
| substring

〈variable〉 → 〈tag〉〈suffix〉
〈suffix〉 → 〈empty〉 | 〈suffix〉〈subscript〉 | 〈suffix〉〈tag〉

| 〈suffix parameter〉
〈subscript〉 → 〈number〉 | [〈numeric expression〉]

〈internal variable〉 → ahangle | ahlength | bboxmargin
| charcode | day | defaultpen | defaultscale | labeloffset
| linecap | linejoin | miterlimit | month | pausing
| prologues | showstopping | time | tracingoutput
| tracingcapsules | tracingchoices | tracingcommands
| tracingequations | tracinglostchars | tracingmacros
| tracingonline | tracingrestores | tracingspecs
| tracingstats | tracingtitles | truecorners
| warningcheck | year
| 〈symbolic token defined by newinternal〉

Figure 56: Part 2 of the syntax for expressions

A User’s Manual for MetaPost 75

〈pseudo function〉 → min(〈expression list〉)
| max(〈expression list〉)
| incr(〈numeric variable〉)
| decr(〈numeric variable〉)
| dashpattern(〈on/off list〉)
| interpath(〈numeric expression〉,〈path expression〉,〈path expression〉)
| buildcycle(〈path expression list〉)
| thelabel〈label suffix〉(〈expression〉,〈pair expression〉)

〈path expression list〉 → 〈path expression〉
| 〈path expression list〉,〈path expression〉

〈on/off list〉 → 〈on/off list〉〈on/off clause〉 | 〈on/off clause〉
〈on/off clause〉 → on〈numeric tertiary〉 | off〈numeric tertiary〉

Figure 57: The syntax for function-like macros

〈boolean expression〉 → 〈expression〉
〈color expression〉 → 〈expression〉
〈numeric atom〉 → 〈atom〉
〈numeric expression〉 → 〈expression〉
〈numeric primary〉 → 〈primary〉
〈numeric tertiary〉 → 〈tertiary〉
〈numeric variable〉 → 〈variable〉 | 〈internal variable〉
〈pair expression〉 → 〈expression〉
〈pair primary〉 → 〈primary〉
〈path expression〉 → 〈expression〉
〈path subexpression〉 → 〈subexpression〉
〈pen expression〉 → 〈expression〉
〈picture expression〉 → 〈expression〉
〈picture variable〉 → 〈variable〉
〈string expression〉 → 〈expression〉
〈suffix parameter〉 → 〈parameter〉
〈transform primary〉 → 〈primary〉

Figure 58: Miscellaneous productions needed to complete the BNF

A User’s Manual for MetaPost 76

〈program〉 → 〈statement list〉end
〈statement list〉 → 〈empty〉 | 〈statement list〉;〈statement〉
〈statement〉 → 〈empty〉

| 〈equation〉 | 〈assignment〉
| 〈declaration〉 | 〈macro definition〉
| 〈compound〉 | 〈pseudo procedure〉
| 〈command〉

〈compound〉 → begingroup〈statement list〉endgroup
| beginfig(〈numeric expression〉);〈statement list〉;endfig

〈equation〉 → 〈expression〉=〈right-hand side〉
〈assignment〉 → 〈variable〉:=〈right-hand side〉

| 〈internal variable〉:=〈right-hand side〉
〈right-hand side〉 → 〈expression〉 | 〈equation〉 | 〈assignment〉

〈declaration〉 → 〈type〉〈declaration list〉
〈declaration list〉 → 〈generic variable〉

| 〈declaration list〉,〈generic variable〉
〈generic variable〉 → 〈symbolic token〉〈generic suffix〉
〈generic suffix〉 → 〈empty〉 | 〈generic suffix〉〈tag〉

| 〈generic suffix〉[]

〈macro definition〉 → 〈macro heading〉=〈replacement text〉enddef
〈macro heading〉 → def〈symbolic token〉〈delimited part〉〈undelimited part〉

| vardef〈generic variable〉〈delimited part〉〈undelimited part〉
| vardef〈generic variable〉@#〈delimited part〉〈undelimited part〉
| 〈binary def〉〈parameter〉〈symbolic token〉〈parameter〉

〈delimited part〉 → 〈empty〉
| 〈delimited part〉(〈parameter type〉〈parameter tokens〉)

〈parameter type〉 → expr | suffix | text
〈parameter tokens〉 → 〈parameter〉 | 〈parameter tokens〉,〈parameter〉
〈parameter〉 → 〈symbolic token〉
〈undelimited part〉 → 〈empty〉

| 〈parameter type〉〈parameter〉
| 〈precedence level〉〈parameter〉
| expr〈parameter〉of〈parameter〉

〈precedence level〉 → primary | secondary | tertiary
〈binary def〉 → primarydef | secondarydef | tertiarydef

〈pseudo procedure〉 → drawoptions(〈option list〉)
| label〈label suffix〉(〈expression〉,〈pair expression〉)
| dotlabel〈label suffix〉(〈expression〉,〈pair expression〉)
| labels〈label suffix〉(〈point number list〉)
| dotlabels〈label suffix〉(〈point number list〉)

〈point number list〉 → 〈suffix〉 | 〈point number list〉,〈suffix〉
〈label suffix〉 → 〈empty〉 | lft | rt | top | bot | ulft | urt | llft | lrt

Figure 59: Overall syntax for MetaPost programs

A User’s Manual for MetaPost 77

〈command〉 → clip〈picture variable〉to〈path expression〉
| interim〈internal variable〉:=〈right-hand side〉
| let〈symbolic token〉=〈symbolic token〉
| newinternal〈symbolic token list〉
| pickup〈expression〉
| randomseed:=〈numeric expression〉
| save〈symbolic token list〉
| setbounds〈picture variable〉to〈path expression〉
| shipout〈picture expression〉
| special〈string expression〉
| 〈addto command〉
| 〈drawing command〉
| 〈font metric command〉
| 〈show command〉
| 〈tracing command〉

〈show command〉 → show〈expression list〉
| showvariable〈symbolic token list〉
| showtoken〈symbolic token list〉
| showdependencies

〈symbolic token list〉 → 〈symbolic token〉
| 〈symbolic token〉,〈symbolic token list〉

〈expression list〉 → 〈expression〉 | 〈expression list〉,〈expression〉

〈addto command〉 →
addto〈picture variable〉also〈picture expression〉〈option list〉
| addto〈picture variable〉contour〈path expression〉〈option list〉
| addto〈picture variable〉doublepath〈path expression〉〈option list〉

〈option list〉 → 〈empty〉 | 〈drawing option〉〈option list〉
〈drawing option〉 → withcolor〈color expression〉

| withpen〈pen expression〉 | dashed〈picture expression〉

〈drawing command〉 → draw〈picture expression〉〈option list〉
| 〈fill type〉〈path expression〉〈option list〉

〈fill type〉 → fill | draw | filldraw | unfill | undraw | unfilldraw
| drawarrow | drawdblarrow | cutdraw

〈tracing command〉 → tracingall | loggingall | tracingnone

Figure 60: The syntax for commands

A User’s Manual for MetaPost 78

〈if test〉 → if〈boolean expression〉:〈balanced tokens〉〈alternatives〉fi
〈alternatives〉 → 〈empty〉

| else:〈balanced tokens〉
| elseif〈boolean expression〉:〈balanced tokens〉〈alternatives〉

〈loop〉 → 〈loop header〉:〈loop text〉endfor
〈loop header〉 → for〈symbolic token〉=〈progression〉

| for〈symbolic token〉=〈for list〉
| forsuffixes〈symbolic token〉=〈suffix list〉
| forever

〈progression〉 → 〈numeric expression〉upto〈numeric expression〉
| 〈numeric expression〉downto〈numeric expression〉
| 〈numeric expression〉step〈numeric expression〉until〈numeric expression〉

〈for list〉 → 〈expression〉 | 〈for list〉,〈expression〉
〈suffix list〉 → 〈suffix〉 | 〈suffix list〉,〈suffix〉

Figure 61: The syntax for conditionals and loops

A User’s Manual for MetaPost 79

B MetaPost Versus METAFONT

Since the METAFONT and MetaPost languages have so much in common, expert users of METAFONT

will want to skip most of the explanations in this document and concentrate on concepts that are
unique to MetaPost. The comparisons in this appendix are intended to help experts that are familiar
with The METAFONTbook as well as other users that want to benefit from Knuth’s more detailed
explanations [4] .

Since METAFONT is intended for making TEX fonts, it has a number of primitives for generating
the tfm files that TEX needs for character dimensions, spacing information, ligatures and kerning.
MetaPost can also be used for generating fonts, and it also has METAFONT’s primitives for making
tfm files. These are listed in Table 12. Explanations can be found in the METAFONT documentation
[4, 7]

commands charlist, extensible, fontdimen, headerbyte
kern, ligtable

ligtable operators ::, =:, =:|, =:|>, |=:, |=:>,
|=:|, |=:|>, |=:|>>, ||:

internal variables boundarychar, chardp, charext, charht,
charic, charwd, designsize, fontmaking

other operators charexists

Table 12: MetaPost primitives for making tfm files.

Even though MetaPost has the primitives for generating fonts, many of the font-making primitives
and internal variables that are part of Plain METAFONT are not defined in Plain MetaPost. Instead,
there is a separate macro package called mfplain that defines the macros required to allow MetaPost
to process Knuth’s Computer Modern fonts as shown in Table 13 [6] . To load these macros, put
“&mfplain” before the name of the input file. This can be done at the ** prompt after invoking the
MetaPost interpreter with no arguments, or on a command line that looks something like this:12

mp ’&mfplain’ cmr10

The analog of a METAFONT command line like

mf ’\mode=lowres; mag=1.2; input cmr10’

is
mp ’&mfplain \mode=lowres; mag=1.2; input cmr10’

The result is a set of PostScript files, one for each character in the font. Some editing would be
required in order to merge them into a downloadable Type 3 PostScript font [1] .

Another limitation of the mfplain package is that certain internal variables from Plain META-
FONT cannot be given reasonable MetaPost definitions. These include displaying, currentwindow,
screen_rows, and screen_cols which depend on METAFONT’s ability to display images on the
computer screen. In addition, pixels_per_inch is irrelevant since MetaPost uses fixed units of
PostScript points.

The reason why some macros and internal variables are not meaningful in MetaPost is that
METAFONT primitive commands cull, display, openwindow, numspecial and totalweight are
not implemented in MetaPost. Also not implemented are a number of internal variables as well as

12Command line syntax is system dependent. Quotes are needed on most Unix systems to protect special characters
like &.

A User’s Manual for MetaPost 80

Defined in the mfplain package
beginchar font_identifier
blacker font_normal_shrink
capsule_def font_normal_space
change_width font_normal_stretch
define_blacker_pixels font_quad
define_corrected_pixels font_size
define_good_x_pixels font_slant
define_good_y_pixels font_x_height
define_horizontal_corrected_pixels italcorr
define_pixels labelfont
define_whole_blacker_pixels makebox
define_whole_pixels makegrid
define_whole_vertical_blacker_pixels maketicks
define_whole_vertical_pixels mode_def
endchar mode_setup
extra_beginchar o_correction
extra_endchar proofrule
extra_setup proofrulethickness
font_coding_scheme rulepen
font_extra_space smode

Defined as no-ops in the mfplain package
cullit proofoffset
currenttransform screenchars
gfcorners screenrule
grayfont screenstrokes
hround showit
imagerules slantfont
lowres_fix titlefont
nodisplays unitpixel
notransforms vround
openit

Table 13: Macros and internal variables defined only in the mfplain package.

A User’s Manual for MetaPost 81

the 〈drawing option〉 withweight. Here is a complete listing of the internal variables whose primitive
meanings in METAFONT do not make sense in MetaPost:

autorounding fillin proofing tracingpens xoffset
chardx granularity smoothing turningcheck yoffset
chardy hppp tracingedges vppp

There is also one METAFONT primitive that has a slightly different meaning in MetaPost. Both
languages allow statements of the form

special 〈string expression〉;
but METAFONT copies the string into its “generic font” output file, while MetaPost interprets the
string as a sequence of PostScript commands that are to be placed at the beginning of the next
output file.

All the other differences between METAFONT and MetaPost are features found only in MetaPost.
These are listed in Table 14. The only commands listed in this table that the preceding sections
do not discuss are extra_beginfig, extra_endfig, and mpxbreak. The first two are strings that
contain extra commands to be processed by beginfig and endfig just as extra_beginchar and
extra_endchar are processed by beginchar and endchar. (The file boxes.mp uses these features).

The other new feature listed in Table 14 not listed in the index is mpxbreak. This is used to
separate blocks of translated TEX or troff commands in mpx files. It should be of no concern to users
since mpx files are generated automatically.

MetaPost primitives not found in METAFONT

bluepart infont redpart
btex linecap setbounds
clip linejoin tracinglostchars
color llcorner truecorners
dashed lrcorner ulcorner
etex miterlimit urcorner
fontsize mpxbreak verbatimtex
greenpart prologues withcolor

Variables and Macros defined only in Plain MetaPost
ahangle cutbefore extra_beginfig
ahlength cuttings extra_endfig
background dashpattern green
bbox defaultfont label
bboxmargin defaultpen labeloffset
beginfig defaultscale mitered
beveled dotlabel red
black dotlabels rounded
blue drawarrow squared
buildcycle drawdblarrow thelabel
butt drawoptions white
center endfig
cutafter evenly

Table 14: Macros and internal variables defined in MetaPost but not METAFONT.

Atts.
References
Index

A User’s Manual for MetaPost 82

References

[1] Adobe Systems Inc. PostScript Language Reference Manual. Addison Wesley, Reading, Mas-
sachusetts, 1986.

[2] J. D. Hobby. Smooth, easy to compute interpolating splines. Discrete and Computational Ge-
ometry, 1(2), 1986.

[3] Brian W. Kernighan. Pic—a graphics language for typesetting. In Unix Research System Papers,
Tenth Edition, pages 53–77. AT&T Bell Laboratories, 1990.

[4] D. E. Knuth. The METAFONTbook. Addison Wesley, Reading, Massachusetts, 1986. Volume C
of Computers and Typesetting.

[5] D. E. Knuth. The TEXbook. Addison Wesley, Reading, Massachusetts, 1986. Volume A of
Computers and Typesetting.

[6] D. E. Knuth. Computer Modern Typefaces. Addison Wesley, Reading, Massachusetts, 1986.
Volume E of Computers and Typesetting.

[7] D. E. Knuth. The new versions of TEX and METAFONT. TUGboat, the TEX User’s Group
Newsletter, 10(3):325–328, November 1989.

Index
#@ 49
& 14
* 2
** 2, 13
++ 14
+-+ 14
-- 2
... 7, 50
:= 9, 18
< 13
<= 13
<> 13
= 9
> 13
>= 13
@ 49
@# 50
abs 15
addto also 40
addto contour 40
addto doublepath 40
ahangle 37
ahlength 37
and 13–14
angle 15
arc length 30, 44
arclength 30, 44
arctime 44
arctime of 30
arithmetic 12, 16, 52
arrays 17

multidimensional 18
arrows 35

double-headed 37
ASCII 67
assignment 9, 18, 53
background 25, 37
〈balanced tokens〉 44, 78
bbox 22, 25
bboxmargin 22
beginfig 3, 17, 38–39, 41–42, 81
begingroup 42, 49
beveled 35
black 12
blue 12
bluepart 16
boolean 16
boolean type 13
bot 18, 38–39

box name 54
boxes.mp 54, 62, 81
boxit 54
boxjoin 55, 57
bp 2
bpath 55, 57–58
btex 20–21, 23
buildcycle 24–26
butt 35, 52
CAPSULE 43
cc 66
ceiling 15
center 22
char 22
charcode 41
circleit 57
circmargin 58
clip 40
cm 2
color 16
color type 12
comments 17
comparison 13
compound statement 42
concatenation 14
control points 5, 61
controls 5
convex polygons 39
corners 35
cosd 15
curl 7
currentpen 38, 40
currentpicture 13, 25, 40–41
curvature 5–7
cutafter 28, 55
cutbefore 28, 55
cutdraw 52
cuttings 28
cycle 4, 15
〈dash pattern〉 32, 34

recursive 34
dashed 32, 37, 40
dashpattern 47
day 64
dd 66
decimal 15
declarations 18
decr 51
def 41

83

A User’s Manual for MetaPost 84

defaultdx 55
defaultdy 55
defaultfont 19
defaultpen 39
defaultscale 20
dir 6
direction of 28, 51
directionpoint of 30
directiontime of 28
ditto 66
div 68
dotlabel 19
dotlabels 19, 53
dotprod 13, 50–51
dots 3
down 6
downto 52
draw 2, 13, 25, 50
drawarrow 37, 55
drawboxed 54, 57–58
drawboxes 57–58
drawdblarrow 37
〈drawing option〉 40
drawoptions 37, 40
drawshadowed 58
drawunboxed 57–58
draw mark 44
draw marked 44
dvips 1, 22
else 44
elseif 44
end 2–3, 51
enddef 41
endfig 3, 41–42, 81
endfor 3, 52
endgroup 42, 49, 51
epsf.tex 3
epsilon 66
erasing 25, 37
etex 20–21, 23
evenly 32, 35
exitif 53
exitunless 53
exponentiation 13
expr 41, 43
〈expression〉 13, 51, 73
extra beginfig 81
extra endfig 81
false 13
fi 44
files

input 1

mpx 21, 81
output 3
tfm 20, 79
transcript 2, 12, 60–61

fill 23, 41, 50–51
filldraw 37
fixpos 57
fixsize 57
floor 15
fontsize 20
for 3, 52
forever 53
forsuffixes 53
fractions 15
fullcircle 23–24, 39
functions 42
〈generic variable〉 49, 76
getmid 47
green 12
greenpart 16
halfcircle 23–24
hex 68
hide 46
identity 31
if 44, 61, 63
in 2
Inconsistent equation 9, 11
incr 47, 51
indexing 14
inequality 13
infinity 28
inflections 7
infont 22
input 54, 62
interim 43, 52
internal variables 12, 18–19, 22–23, 35, 37, 41,

43, 55, 58, 61, 79
intersection 26–27
intersectionpoint 27, 50
intersections 25
intersectiontimes 27
inverse 31
joinup 47, 50
kerning 20, 79
known 16
label 18
〈label suffix〉 18, 75–76
labeloffset 19
labels 19
left 6
length 28
let 71

A User’s Manual for MetaPost 85

lft 18, 38–39
ligatures 20, 79
linecap 35, 43, 52
linejoin 35
llcorner 22
llft 18
locality 18, 42
loggingall 61
loops 3, 52, 63
lrcorner 22
lrt 18
makepath 39
makepen 39
mark angle 46
mark rt angle 46
max 72
mediation 10–11, 15
METAFONT 1, 19, 39–41, 52, 60, 62, 79
mexp 68
mfplain 79
middlepoint 44
midpoint 43–44
min 72
mitered 35
miterlimit 35
mlog 68
mm 2
mod 68
month 64
mp 1
mpxbreak 81
mpxerr.log 21
mpxerr.tex 21
multiplication

implicit 2, 16
newinternal 18
normaldeviate 68
not 13
〈nullary op〉 14, 73–74
nullpicture 14
numeric 16
〈numeric atom〉 15
numeric type 12
oct 69
odd 69
〈of operator〉 51, 73–74
〈option list〉 40, 77
or 13–14
origin 66
pair 16
pair type 12
parameter

expr 43, 51, 53
suffix 47, 49–51, 53
text 46, 49, 51

parameterization 5
parsing irregularities 13, 15–16
path 16, 44
〈path knot〉 14, 73
path type 12
pausing 64
pc 66
pen 16
pen type 13
pencircle 2, 38
penoffset 69
pens

elliptical 38
polygonal 39, 62

pensquare 39
pic 57–58
pickup 2, 13
picture 16
picture type 13
〈picture variable〉 23, 77
Plain macros 2, 18–19, 39, 41, 62, 79
point of 27
point

PostScript 2
printer’s 2

postcontrol 69
PostScript 1–2, 13, 22–23, 41

point 2
structured 22

precontrol 69
〈primary〉 13, 73
〈primary binop〉 14, 22, 51, 73–74
primarydef 51
prologues 22
pt 2
quartercircle 66
red 12
redpart 16
Redundant equation 11
reflectedabout 31
〈replacement text〉 41, 51, 76
reverse 37
right 6
\rlap 23
rotated 20, 30
rotated text 20
rotatedaround 31, 41
round 15, 50
rounded 35

A User’s Manual for MetaPost 86

roundoff error 11
rt 18, 38
save 42
scaled 2, 22, 30, 32
〈secondary〉 13, 51, 73
〈secondary binop〉 14, 27, 51, 73–74
secondarydef 51
self 59
semicolon 51
setbounds 23
shifted 30
shipout 41
show 9, 12, 42–43, 60–61
showdependencies 61
showstopping 64
showtoken 61
showvariable 61
sind 15
size 22
slanted 30
special 81
sqrt 15
squared 35
step 52
str 50, 53
string 16
string constants 13, 16
string type 13
\strut 23
subpath 28
subroutines 41
〈subscript〉 17, 47, 74
subscript

generic 18, 49
substring of 14
〈suffix〉 16–17, 46–47, 50–51, 73–74, 76, 78
tags 17, 49–50
tension 7
〈tertiary〉 13, 51, 73
〈tertiary binop〉 14, 28, 51, 73–74
tertiarydef 51
TEX 1, 3, 20, 23, 81

errors 21
fonts 22

text 46, 51
text and graphics 18
tfm file 20, 79
thelabel 19, 25
time 64
tokens 16

symbolic 16, 42
top 18, 38–39

tracingall 61
tracingcapsules 61
tracingchoices 61
tracingcommands 61
tracingequations 62
tracinglostchars 62
tracingmacros 62
tracingnone 61
tracingonline 12, 61
tracingoutput 62
tracingrestores 62
tracingspecs 62
tracingstats 62
tracingtitles 64
transcript file 2
transform 16
transform type 12, 30
transformation

unknown 32
transformed 12, 31
troff 1, 3, 21, 81
true 13
truecorners 23
type declarations 18
types 12
ulcorner 22
ulft 18
〈unary op〉 14, 73–74
undraw 37
unfill 25
unfilldraw 37
uniformdeviate 70
unitsquare 66
unitvector 15, 50
Unix 21
unknown 16
until 52
up 6
upto 52
urcorner 22
urt 18
vardef 49
variables

internal 12, 18–19, 22–23, 35, 37, 41, 43,
55, 58, 61, 79

local 18, 42
verbatimtex 21
warningcheck 12
whatever 10, 43
white 12
winding number 23
withcolor 23, 37, 40

A User’s Manual for MetaPost 87

withdots 32
withpen 37, 40
xpart 16, 32
xscaled 30
xxpart 32
xypart 32
year 64
ypart 16, 32
yscaled 30
yxpart 32
yypart 32
z convention 9, 17, 50
zscaled 30, 46
[] 18, 49

