Expanded Plain TEX

November 2000
For version 2.8.1.

Karl Berry
Steven Smith

Copyright (© 1989, 90, 91, 92, 93, 94 Karl Berry. Steven Smith wrote the documentation for the
commutative diagram macros. (He also wrote the macros.)

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided also that the section entitled “GNU General Public License” is
included exactly in the original, and provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that the section entitled “GNU General
Public License” may be included in a translation approved by the author instead of in the original
English.

Chapter 1: Introduction 1

1 Introduction

The Eplain macro package expands on and extends the definitions in plain TEX. This manual
describes the definitions that you, as either an author or a macro writer, might like to use. It
doesn’t discuss the implementation; see comments in the source code (‘xeplain.tex’) for that.

Eplain is not intended to provide “generic” typesetting capabilities, as do LaTgX (written by
Leslie Lamport) or Texinfo (written by Richard Stallman and others). Instead, it provides defini-
tions that are intended to be useful regardless of the high-level commands that you use when you
actually prepare your manuscript.

For example, Eplain does not have a command \section, which would format section headings
in an “appropriate” way, such as LaTEX’s \section. The philosophy of Eplain is that some people
will always need or want to go beyond the macro designer’s idea of “appropriate”. Such canned
macros are fine—as long as you are willing to accept the resulting output. If you don’t like the
results, or if you are trying to match a different format, you are out of luck.

On the other hand, almost everyone would like capabilities such as cross-referencing by labels,
so that you don’t have to put actual page numbers in the manuscript. The author of Eplain is not
aware of any generally available macro packages that (1) do not force their typographic style on an
author, and yet (2) provide such capabilities.

Besides such generic macros as cross-referencing, Eplain contains another set of definitions: ones
that change the conventions of plain TEX’s output. For example, math displays in TEX are, by
default, centered. If you want your displays to come out left-justified, you have to plow through
The TEXbook to find some way to do it, and then adapt the code to your own needs. Eplain tries
to take care of the messy details of such things, while still leaving the detailed appearance of the
output up to you.

Finally, numerous definitions turned out to be useful as Eplain was developed. They are also
documented in this manual, on the chance that people writing other macros will be able to use
them.

You can send bug reports or suggestions to tex-eplain@cs.umb.edu. The current version
number of Eplain is defined as the macro \fmtversion at the end of the source file ‘eplain.tex’.
When corresponding, please refer to it.

To get on this mailing list yourself, email ‘tex-eplain-request@cs.umb.edu’ with a message
whose body contains a line

subscribe you@your.preferred.address

2 Expanded Plain TEX

2 Installation

The simplest way to install Eplain is simply to install the file ‘eplain.tex’ in a directory where
TEX will find it. What that directory is obviously depends on your operating system and TEX
installation. I personally install ‘eplain.tex’ in a directory ‘/usr/local/lib/texmf/tex/plain’.

If you want, you can also create a format (‘.fmt’) file for Eplain, which will eliminate the
time spent reading the macro source file with \input. You do this by issuing a sequence of Unix
commands something like this:

prompt$ touch eplain.aux

prompt$ initex

This is TeX,

**&plain eplain

(eplain.tex)

*\dump

. messages ...

You must make sure that ‘eplain.aux’ exists before you run ‘initex’; otherwise, warning messages
about undefined labels will never be issued.

You then have to install the resulting ‘eplain.fmt’ in some system directory or set an environ-
ment variable to tell TEX how to find it. I install the format files in ‘/usr/local/lib/texmf/ini’;
the environment variable for the Web2C port of TEX to Unix is TEXFORMATS.

Some implementations of TEX (including Web2C) use the name by which TEX is invoked to
determine what format to read. For them, you should make a link to the ‘virtex’ program named
‘etex’; and then install the format file with the name ‘etex.fmt’. This lets users invoke TEX as
‘etex’ and get the format file read automatically, without having to say ‘&eplain’.

For convenience, the file ‘etex.tex’ in the distribution directory does \input eplain and then
\dump, so that if you replace ‘eplain’ with ‘etex’ in the example above, the format file will end
up with the right name.

The install target in the ‘Makefile’ does all this properly for Unix systems and Web2C. You
may have to change the pathnames.

Under emtex, ‘eaj@acpub.duke.edu’ says that
tex386 -i “&plain eplain \dump

produces a format file.

Chapter 3: Invoking Eplain 3

3 Invoking Eplain

The simplest way to use Eplain is simply to put:
\input eplain
at the beginning of your input file. The macro file is small enough that reading it does not take an
unbearably long time—at least on contemporary machines.

In addition, if a format (‘.fmt’) file has been created for Eplain (see the previous section), you
can eliminate the time spent reading the macro source file. You do this by responding &eplain or
&etex to TEX’s “**’ prompt. For example:

initex
This is TeX,
**xgeplain myfile

Depending on the implementation of TEX which you are using, you might also be able to invoke

TEX as ‘etex’ and have the format file automatically read.

If you write something which you will be distributing to others, you won’t know if the Eplain
format will be loaded already. If it is, then doing \input eplain will waste time; if it isn’t, then
you must load it. To solve this, Eplain defines the control sequence \eplain to be the letter t
(a convention borrowed from Lisp; it doesn’t actually matter what the definition is, only that the
definition exists). Therefore, you can do the following:

\ifx\eplain\undefined \input eplain \fi
where \undefined must never acquire a definition.
Eplain consists of several source files:

‘xeplain.tex’
most of the macros;

‘arrow.tex’
commutative diagram macros, see Chapter 5 [Arrow theoretic diagrams|, page 27 (writ-
ten by Steven Smith);

‘btxmac.tex’
bibliography-related macros, see Section 4.3 [Citations|, page 5;

‘texnames.sty’
abbreviations for various TEX-related names, see Section 4.19 [Logos|, page 25 (edited
by Nelson Beebe).

The file ‘eplain.tex’ is all of these files merged together, with comments removed.

All of these files except ‘xeplain.tex’ can be input individually, if all you want are the definitions
in that file.

Also, since the bibliography macros are fairly extensive, you might not want to load them, to
conserve TEX’s memory. Therefore, if the control sequence \nobibtex is defined, then the bibliog-
raphy definitions are skipped. You must set \nobibtex before ‘eplain.tex’ is read, naturally. For
example, you could start your input file like this:

\let\nobibtex = t
\input eplain
By default, \nobibtex is undefined, and so the bibliography definitions are made.

4 Expanded Plain TEX

Likewise, define \noarrow if you don’t want to include the commutative diagram macros from
‘arrow.tex’, perhaps because you already have conflicting ones.

If you don’t want to read or write an ‘aux’ file at all, for any kind of cross-referencing, define
\noauxfile before reading ‘eplain.tex’. This also turns off all warnings about undefined labels.

Eplain conflicts with AMSTEX (more precisely, with ‘amsppt.sty’) The macros \cite and \ref
are defined by both.

If you want to use AMSTEX’s \cite, the solution is to define \nobibtex before reading Eplain,
as described above.

If you have ‘amsppt.sty’ loaded and use \ref, Eplain writes a warning on your terminal. If
you want to use the AMSTEX \ref, do \let\ref = \amsref after reading Eplain. To avoid the
warning, do \let\ref = \eplainref after reading Eplain and before using \ref.

Chapter 4: User definitions 5

4 User definitions

This chapter describes definitions that are meant to be used directly in a document. When
appropriate, ways to change the default formatting are described in subsections.

4.1 Diagnostics

Plain TEX provides the \tracingall command, to turn on the maximum amount of tracing
possible in TEX. The (usually voluminous) output from \tracingall goes both on the terminal
and into the transcript file. It is sometimes easier to have the output go only to the transcript
file, so you can peruse it at your leisure and not obscure other output to the terminal. So, Eplain
provides the command \loggingall. (For some reason, this command is available in Metafont,

but not in TEX.)

It is also sometimes useful to see the complete contents of boxes. \tracingboxes does this. (It
doesn’t affect whether or not the contents are shown on the terminal.)

You can turn off all tracing with \tracingoff.

You can also turn logging on and off globally, so you don’t have to worry about whether or
not you’re inside a group at the time of command. These variants are named \gloggingall and
\gtracingall.

Finally, if you write your own help messages (see \newhelp in The TgXbook), you want a
convenient way to break lines in them. This is what TEX’s \newlinechar parameter is for;
however, plain TEX doesn’t set \newlinechar. Therefore, Eplain defines it to be the character
~~J.

For example, one of Eplain’s own error messages is defined as follows:
\newhelp\envhelp{Perhaps you forgot to end the previous~"J}

environment? I’m finishing off the current group,”~"J%
hoping that will fix it.}%

4.2 Rules

The default dimensions of rules are defined in chapter 21 of the The TEXbook. To sum up what is
given there, the “thickness” of rules is 0.4pt by default. Eplain defines three parameters that let you
change this dimension: \hruledefaultheight, \hruledefaultdepth, and \vruledefaultwidth.
By default, they are defined as The TEXbook describes.

But it would be wrong to redefine \hrule and \vrule. For one thing, some macros in plain
TEX depend on the default dimensions being used; for another, rules are used quite heavily, and
the performance impact of making it a macro can be noticeable. Therefore, to take advantage of
the default rule parameters, you must use \ehrule and \evrule.

4.3 Citations

Bibliographies are part of almost every technical document. To handle them easily, you need two
things: a program to do the tedious formatting, and a way to cite references by labels, rather than
by numbers. The BibTEX program, written by Oren Patashnik, takes care of the first item; the
citation commands in LaTEX, written to be used with BibTEX, take care of the second. Therefore,
Eplain adopts the use of BibTEX, and virtually the same interface as LaTgX.

6 Expanded Plain TEX

The general idea is that you put citation commands in the text of your document, and commands
saying where the bibliography data is. When you run TEX, these commands produce output on
the file with the same root name as your document (by default) and the extension ‘.aux’. BibTEX
reads this file. You should put the bibliography data in a file or files with the extension ‘.bib’.
BibTEX writes out a file with the same root name as your document and extension ‘.bbl’. Eplain
reads this file the next time you run your document through TEX. (It takes multiple passes to
get everything straight, because usually after seeing your bibliography typeset, you want to make
changes in the ‘.bib’ file, which means you have to run BibTEX again, which means you have to
run TEX again. . .) An annotated example of the whole process is given below.

If your document has more than one bibliography—for example, if it is a collection of papers—
you can tell Eplain to use a different root name for the ‘.bbl’ file by defining the control sequence
\bblfilebasename. The default definition is simply \ jobname.

See the document BibTgXing (whose text is in the file ‘btxdoc.tex’, which should be in the
Eplain distribution you got) for information on how to write your .bib files. Both the BibTEX and
the Eplain distributions contain several examples, also.

The \cite command produces a citation in the text of your document. The exact printed
form the citation will take is under your control; see Section 4.3.1 [Formatting citations|, page 7.
\cite takes one required argument, a comma-separated list of cross-reference labels (see Section 4.9
|Cross-references|, page 13, for exactly what characters are allowed in such labels). Warning: spaces
in this list are taken as part of the following label name, which is probably not what you expect.
The \cite command also produces a command in the .aux file that tells BibTEX to retrieve the
given reference(s) from the .bib file. \cite also takes one optional argument, which you specify
within square brackets, as in LaTgX. This text is simply typeset after the citations. (See the
example below.)

Another command, \nocite, puts the given reference(s) into the bibliography, but produces
nothing in the text.

The \bibliography command is next. It serves two purposes: producing the typeset bib-
liography, and telling BibTEX the root names of the .bib files. Therefore, the argument to
\bibliography is a comma separated list of the .bib files (without the ‘.bib’). Again, spaces
in this list are significant.

You tell BibTEX the particular style in which you want your bibliography typeset with one
more command: \bibliographystyle. The argument to this is a single filename style, which tells
BibTEX to look for a file style.bst. See the document Designing BibTEX styles (whose text is in
the ‘btxhak.tex’) for information on how to write your own styles.

Eplain automatically reads the citations from the .aux file when your job starts.

If you don’t want to see the messages about undefined citations, you can say \xrefwarningfalse
before making any citations. Eplain automatically does this if the .aux file does not exist. You
can restore the default by saying \xrefwarningtrue.

Here is a TEX input file that illustrates the various commands.

\input eplain % Reads the .aux file.

Two citations to Knuthian works:
\cite[note]l{surreal,concrete-math}.

\beginsection{References.}\par ¥ Title for the bibliography.

\bibliography{knuth} % Use knuth.bib for the labels.

\bibliographystyle{plain} % Number the references.

Chapter 4: User definitions 7

\end % End of the document.

If we suppose that this file was named ‘citex.tex’ and that the bibliography data is in
‘knuth.bib’ (as the \bibliography command says), the following commands do what’s required.
(‘¢ ’ represents the shell prompt.)

$ tex citex (produces undefined citation messages)

$ bibtex citex (read knuth.bib and citex.aux, write citex.bbl)
$ tex citex (read citex.bbl, still have undefined citations)
$ tex citex (one more time, to resolve the references)

The output looks something like (because we used the plain bibliography style):
Two citations to Knuthian works: [2,1 note].
References

[1] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics.
Addison-Wesley, Reading, Massachusetts, 1989.

[2] Donald E. Knuth. Surreal Numbers. Addison-Wesley, Reading, Massachusetts,
1974.

See the BibTEX documentation for information on how to write the bibliography databases, and
the bibliography styles that are available. (If you want your references printed with names, as in
[Knu74], instead of numbered, the bibliography style is alpha.)

4.3.1 Formatting citations

You may wish to change Eplain’s formatting of citations; i.e., the result of your \cite commands.
By default, the citation labels are printed one after another, separated by commas and enclosed in
brackets, using the main text font. Some formats require other styles, such as superscripted labels.
You can accomodate such formats by redefining the following macros.

\printcitestart

\printcitefinish
Eplain expands these macros at the begining and end of the list of citations for each
\cite command. By default, they produce a ‘[’ and ‘]’, respectively.

\printbetweencitations
If a \cite command has multiple citations, as in \cite{acp,texbook}, Eplain expands
this macro in between each pair of citations. By default, it produces a comma followed
by a space.

\printcitenote
This macro takes one argument, which is the optional note to the \cite command. If
the \cite command had no note, this macro isn’t used. Otherwise, it should print the
note. By default, the note is preceded with a comma and a space.

Here is an example, showing you could produce citations as superscripted labels, with the
optional notes in parentheses.

\def\printcitestart{\unskip $~\bgroup}
\def\printbetweencitations{,}
\def\printcitefinish{\egroup$?}
\def\printcitenote#1{\hbox{\sevenrm\space (#1)3}}

8 Expanded Plain TEX

4.3.2 Formatting bibliographies

You may wish to change Eplain’s formatting of the bibliography, especially with respect to the
fonts that are used. Therefore, Eplain provides the following control sequences:

\biblabelwidth
This control sequence represents a \dimen register, and its value is the width of the
widest label in the bibliography. Although it is unlikely you will ever want to redefine
it, you might want to use it if you redefine \biblabelprint, below.

\biblabelprint
This macro takes one argument, the label to print. By default, the label is put in a box
of width \biblabelwidth, and is followed by an enspace. When you want to change
the spacing around the labels, this is the right macro to redefine.

\biblabelcontents
This macro also takes one argument, the label to print. By default, the label is printed
using the font \bblrm (below), and enclosed in brackets. When you want to change
the appearance of the label, but not the spacing around it, this is the right macro to
redefine.

\bblrm The default font used for printing the bibliography.
\bblem The font used for printing the titles and other “emphasized” material.

\bblsc In some styles, authors’ names are printed in a caps-and-small-caps font. In those
cases, this font is used.
\bblnewblock

This is invoked between each of the parts of a bibliography entry. The default is to
leave some extra space between the parts; you could redefine it to start each part on
a new line (for example). A part is simply a main element of the entry; for example,
the author is a part. (It was LaTgX that introduced the (misleading, as far as I am
concerned) term ‘block’ for this.)

\biblabelextraspace
Bibliography entries are typeset with a hanging indentation of \biblabelwidth plus
this. The default is .5em, where the em width is taken from the \bblrm font. If you
want to change this, you should do it inside \bblhook.

\bblhook This is expanded before reading the .bbl file. By default, it does nothing. You could,
for example, define it to set the bibliography fonts, or produce the heading for the
references. Two spacing parameters must be changed inside \bblhook: \parskip,
which produces extra space between the items; and \biblabelextraspace, which is
described above. (By the way, \hookappend won’t work with \bblhook, despite the
names. Just use \def.)

If you are really desperate, you can also hand-edit the .bbl file that BibTpX produces to do
anything you wish.

4.4 Displays

By default, TEX centers displayed material. (Displayed material is just whatever you put be-
tween $$’s—it’s not necessarily mathematics.) Many layouts would be better served if the displayed

Chapter 4: User definitions 9

material was left-justified. Therefore, Eplain provides the command \leftdisplays, which indents
displayed material by \parindent plus \leftskip, plus \leftdisplayindent.

You can go back to centering displays with \centereddisplays. (It is usually poor typography
to have both centered and left-justified displays in a single publication, though.)

\leftdisplays also changes the plain TEX commands that deal with alignments inside math
displays, \displaylines, \eqalignno, and \leqalignno, to produce left-justified text. You can
still override this formatting by inserting \hfill glue, as explained in The TEXbook.

4.4.1 Formatting displays

If you want some other kind of formatting, you can write a definition of your own, analogous
to \leftdisplays. You need only make sure that \leftdisplaysetup is called at the beginning
of every display (presumably by invoking it in TEX’s \everydisplay parameter), and to define
\generaldisplay.

\leftdisplays expands the old value of \everydisplay before calling \leftdisplaysetup, so
that any changes you have made to it won’t be lost. That old token list as available as the value
of the token register \previouseverydisplay.

4.5 Time of day

TEX provides the day, month, and year as numeric quantities (unless your TEX implementation
is woefully deficient). Eplain provides some control sequences to make them a little more friendly
to humans.

\monthname produces the name of the current month, abbreviated to three letters.

\fullmonthname produces the name of the current month, unabbreviated (in English).

\timestring produces the current time, as in ‘1:14 p.m.’

\timestamp produces the current date and time, as in ‘23 Apr 64 1:14 p.m.”. (Except the
spacing is slightly different.)

\today produces the current date, as in ‘23 April 1964’

4.6 Lists

Many documents require lists of items, either numbered or simply enumerated. Plain TEX defines
one macro to help with creating lists, \item, but that is insufficient in many cases. Therefore, Eplain
provides two pairs of commands:

\numberedlist ... \endnumberedlist

\orderedlist ... \endorderedlist
These commands (they are synonyms) produce a list with the items numbered sequen-
tially, starting from one. A nested \numberedlist labels the items with lowercase
letters, starting with ‘a’. Another nested \numberedlist labels the items with roman
numerals. Yet more deeply nested numbered lists label items with ‘*’.

\unorderedlist ... \endunorderedlist
This produces a list with the items labelled with small black boxes (“square bullets”).
A nested \unorderedlist labels items with em-dashes. Doubly (and deeper) nested
unordered lists label items with “*’s.

10 Expanded Plain TEX

The two kinds of lists can be nested within each other, as well.

In both kinds of lists, you begin an item with \1i. An item may continue for several paragraphs.
Each item starts a paragraph.

You can give \1i an optional argument, a cross-reference label. It’s defined to be the “marker”
for the current item. This is useful if the list items are numbered. You can produce the value of
the label with \xrefn. See Section 4.9 [Cross-references|, page 13.

You can also say \listcompact right after \numberedlist or \unorderedlist. The items
in the list will then not have any extra space between them (see Section 4.6.1 [Formatting lists]
page 10). You might want to do this if the items in this particular list are short.

Y

Here is an example:

\numberedlist\listcompact
\1li The first item.
\1li The second item.

The second paragraph of the second item.
\endnumberedlist

4.6.1 Formatting lists

Several registers define the spacing associated with lists. It is likely that their default values
won’t suit your particular layout.

\abovelistskipamount, \belowlistskipamount
The vertical glue inserted before and after every list, respectively.

\interitemskipamount
The vertical glue inserted before each item except the first. \listcompact resets this
to zero, as mentioned above.

\listleftindent, \listrightindent
\listrightindent is the amount of space by which the list is indented on the right;
i.e., it is added to \rightskip. \listleftindent is the amount of space, relative to
\parindent, by which the list is indented on the left. Why treat the two parameters
differently? Because (a) it is more useful to make the list indentation depend on the
paragraph indentation; (b) footnotes aren’t formatted right if \parindent is reset to
Z€ro.

The three vertical glues are inserted by macros, and preceded by penalties: \abovelistskip
does \vpenalty\abovelistpenalty and then \vskip\abovelistskip. \belowlistskip and
\interitemskip are analogous.

In addition, the macro \listmarkerspace is called to separate the item label from the item
text. This is set to \enspace by default.

If you want to change the labels on the items, you can redefine these macros: \numberedmarker
or \unorderedmarker. The following registers might be useful if you do:

\numberedlistdepth, \unorderedlistdepth
These keep track of the depth of nesting of the two kinds of lists.

Chapter 4: User definitions 11

\itemnumber, \itemletter
These keep track of the number of items that have been seen in the current numbered
list. They are both integer registers. The difference is that \itemnumber starts at one,
and \itemletter starts at 97, i.e., lowercase ‘a’.

You can also redefine the control sequences that are used internally, if you want to do something
radically different: \beginlist is invoked to begin both kinds of lists; \printitem is invoked to
print the label (and space following the label) for each item; and \endlist is invoked to end both
kinds of lists.

4.7 Verbatim listing

It is sometimes useful to include a file verbatim in your document; for example, part of a
computer program. The \1listing command is given one argument, a filename, and produces the
contents of that file in your document. \listing expands \listingfont to set the current font.
The default value of \1listingfont is \tt.

You can take arbitrary actions before reading the file by defining the macro \setuplistinghook.
This is expanded just before the file is input.

If you want to have line numbers on the output, you can say \let\setuplistinghook =
\linenumberedlisting. The line numbers are stored in the count register \lineno while the
file is being read. You can redefine the macro \printlistinglineno to change how they are
printed.

You can produce in-line verbatim text in your document with \verbatim. End the text with
|endverbatim. If you need a ‘|’ in the text, double it. If the first character of the verbatim text
is a space, use | . (| will work elsewhere in the argument, too, but isn’t necessary.)

For example:
\verbatim| ||\#%&!|endverbatim
produces | \#%&!.
Line breaks and spaces in the verbatim text are preserved.

You can change the verbatim escape character from the default ‘|’ with \verbatimescapechar
char; for example, this changes it to ‘@’.

\verbatimescapechar \@

The backslash is not necessary in some cases, but is in others, depending on the catcode of the
character. The argument to \verbatimescapechar is used as \catcode ‘char, so the exact rules
follow that for \catcode.

Because \verbatim must change the category code of special characters, calling inside a macro
definition of your own does not work properly. For example:

\def\mymacro{\verbatim &#J|endverbatim}}, Doesn’t work!

To accomplish this, you must change the category codes yourself before making the macro
definition. Perhaps \uncatcodespecials will help you (see Section 6.1 [Category codes|, page 34).

12 Expanded Plain TEX

4.8 Contents

Producing a table of contents that is both useful and aesthetic is one of the most difficult design
problems in any work. Naturally, Eplain does not pretend to solve the design problem. Collecting
the raw data for a table of contents, however, is much the same across documents. Eplain uses
an auxiliary file with extension ‘.toc’ (and the same root name as your document) to save the
information.

To write an entry for the table of contents, you say \writetocentry{part}{text}, where part
is the type of part this entry is, e.g., ‘chapter’, and text is the text of the title. \writetocentry
puts an entry into the .toc file that looks like \tocpartentry{text}{page number}. The text is
written unexpanded.

A related command, \writenumberedtocentry, takes one additional argument, the first token
of which is expanded at the point of the \writenumberedtocentry, but the rest of the argument
is not expanded. The usual application is when the parts of the document are numbered. On
the other hand, the one-level expansion allows you to use the argument for other things as well
(author’s names in a proceedings, say), and not have accents or other control sequences expanded.
The downside is that if you want full expansion of the third argument, you don’t get it—you must
expand it yourself, before you call \writenumberedtocentry.

For example:

\writenumberedtocentry{chapter}{A \sin wave}{\the\chapno}
\writetocentry{section}{A section title}

Supposing \the\chapno expanded to ‘3" and that the \write’s occurred on pages eight and nine,
respectively, the above writes the following to the .toc file:

\tocchapterentry{A \sin wave}{3}{8}
\tocsectionentry{A section title}{9}

You read the .toc file with the command \readtocfile. Naturally, whatever \toc... entry
commands that were written to the file must be defined when \readtocfile is invoked. Eplain has
minimal definitions for \tocchapterentry, \tocsectionentry, and \tocsubsectionentry, just
to prevent undefined control sequence errors in common cases. They aren’t suitable for anything
but preliminary proofs.

After reading the .toc file, \readtocfile opens the file for writing, thereby deleting the infor-
mation from the previous run. You should therefore arrange that \readtocfile be called before
the first call to a \writetoc... macro. On the other hand, if you don’t want to rewrite the
.toc file, perhaps because you are only running TgpX on part of your manuscript, you can set
\rewritetocfilefalse.

By default, the ‘. toc’ file has the root \ jobname. If your document has more than one contents—
for example, if it is a collection of papers, some of which have their own contents—you can tell
Eplain to use a different root name by defining the control sequence \tocfilebasename.

In addition to the usual table of contents, you may want to have a list of figures, list of tables,
or other such contents-like list. You can do this with \definecontentsfile{abbrev}. All of the
above commands are actually a special case that Eplain predefines with

\definecontentsfile{toc}

The abbrev is used both for the file extension and in the control sequence names.

Chapter 4: User definitions 13

4.9 Cross-references

It is often useful to refer the reader to other parts of your document; but putting literal page,
section, equation, or whatever numbers in the text is certainly a bad thing.

Eplain therefore provides commands for symbolic cross-references. It uses an auxiliary file with
extension .aux (and the same root name as your document) to keep track of the information.
Therefore, it takes two passes to get the cross-references right—one to write them out, and one
to read them in. Eplain automatically reads the .aux file at the first reference; after reading it,
Eplain reopens it for writing.

You can control whether or not Eplain warns you about undefined labels. See Section 4.3
[Citations|, page 5.

Labels in Eplain’s cross-reference commands can use characters of category code eleven (letter),
twelve (other), ten (space), three (math shift), four (alignment tab), seven (superscript), or eight
(subscript). For example, ‘(al $&~_’ is a valid label (assuming the category codes of plain TEX),
but ‘%#\{’ has no valid characters.

You can also do symbolic cross-references for bibliographic citations and list items. See Sec-
tion 4.3 [Citations], page 5, and Section 4.6 [Lists|, page 9.

4.9.1 Defining generic references

Eplain provides the command \definexref for general cross-references. It takes three argu-
ments: the name of the label (see section above for valid label names), the value of the label (which
can be anything), and the “class” of the reference—whether it’s a section, or theorem, or what.
For example:

\definexref{sec-intro}{3.1}{section}

Of course, the label value is usually generated by another macro using TEX count registers or some
such.

\definexref doesn’t actually define label; instead, it writes out the definition to the .aux file,
where Eplain will read it on the next TEX run.

The class argument is used by the \ref and \refs commands. See the next section.

4.9.2 Using generic references

To retrieve the value of the label defined via \definexref (see the previous section), Eplain
provides the following macros:

\refn{label}

\xrefn{label}
\refn and \xrefn (they are synonyms) produce the bare definition of label. If label
isn’t defined, issue a warning, and produce label itself instead, in typewriter. (The
warning isn’t given if \xrefwarningfalse.)

\ref{label}
Given the class ¢ for label (see the description of \definexref in the previous section),
expand the control sequence \c word (if it’s defined) followed by a tie. Then call \refn
on label. (Example below.)

14 Expanded Plain TEX

\refs{label}
Like \ref, but append the letter ‘s’ to the \...word.

The purpose of the \...word macro is to produce the word ‘Section’ or ‘Figure’ or whatever
that usually precedes the actual reference number.
Here is an example:
\def\sectionword{Section}
\definexref{sec-intro}{3.1}{section}

\definexref{sec-next}{3.2}{section}
See \refs{sec-intro} and \refn{sec-next} ...

This produces ‘See Sections 3.1 and 3.2 ...’

4.10 Page references

Eplain provides two commands for handling references to page numbers, one for definition and
one for use.

\xrdef{label}
Define label to be the current page number. This produces no printed output, and
ignores following spaces.

\xref{label}
Produce the text ‘p. page-number’, which is the usual form for cross-references. The
page-number is actually label’s definition; if label isn’t defined, the text of the label
itself is printed.

4.10.1 Equation references

Instead of referring to pages, it’s most useful if equation labels refer to equation numbers.
Therefore, Eplain reserves a \count register, \eqnumber, for the current equation number, and
increments it at each numbered equation.

Here are the commands to define equation labels and then refer to them:

\eqdef{label}
This defines label to be the current value of \egnumber, and, if the current context is
not inner, then produces a \egno command. (The condition makes it possible to use
\eqdef in an \eqalignno construction, for example.) The text of the equation number
is produced using \egprint. See Section 4.10.1.1 [Formatting equation references]
page 15.

)

If label is empty, you still get an equation number (although naturally you can’t reliably
refer to it). This is useful if you want to put numbers on all equations in your document,
and you don’t want to think up unique labels.

\eqdefn{label}
This is like \eqdef, except it always omits the \eqno command. It can therefore be
used in places where \eqdef can’t; for example, in a non-displayed equation. The
text of the equation number is not produced, so you can also use it in the (admittedly

unusual) circumstance when you want to define an equation label but not print that
label.

Chapter 4: User definitions 15

\eqref{label}
This produces a formatted reference to label. If label is undefined (perhaps because it
is a forward reference), it just produces the text of the label itself. Otherwise, it calls
\egprint.

\eqrefn{label}
This produces the cross-reference text for label. That is, it is like \eqref, except it
doesn’t call \eqgprint.

Equation labels can contain the same characters that are valid in general cross-references.

4.10.1.1 Formatting equation references

Both defining an equation label and referring to it should usually produce output. This output is
produced with the \eqprint macro, which takes one argument, the equation number being defined
or referred to. By default, this just produces ‘ (number)’; where number is the equation number. To
produce the equation number in a different font, or with different surrounding symbols, or whatever,
you can redefine \egprint. For example, the following definition would print all equation numbers
in italics. (The extra braces define a group, to keep the font change from affecting surrounding
text.)

\def\egprint#1{{\it (#1)}}

In addition to changing the formatting of equation numbers, you might to add more structure to
the equation number; for example, you might want to include the chapter number, to get equation
numbers like ‘(1.2)’. To achieve this, you redefine \eqconstruct. For example:

\def\eqconstruct#i{\the\chapternumber.#1}
(If you are keeping the chapter number in a count register named \chapternumber, naturally.)

The reason for having both \eqconstruct and \egprint may not be immediately apparent.
The difference is that \eqconstruct affects the text that cross-reference label is defined to be,
while \egprint affects only what is typeset on the page. The example just below might help.

Usually, you want equation labels to refer to equation numbers. But sometimes you might want
a more complicated text. For example, you might have an equation ‘(1)’, and then have a variation
several pages later which you want to refer to as ‘(1*)’.

Therefore, Eplain allows you to give an optional argument (i.e., arbitrary text in square brackets)
before the cross-reference label to \eqdef. Then, when you refer to the equation, that text is
produced. Here’s how to get the example just mentioned:

$$...\eqdef{a-eq}$$

$$...\eqdef [\eqrefn{a-eq}t*]{a-eq-var}$$
In \eqref{a-eq-var}, we expand on \eqref{a-eq},

We use \eqrefn in the cross-reference text, not \eqref, so that \eqprint is called only once.

4.10.1.2 Subequation references

Eplain also provides for one level of substructure for equations. That is, you might want to
define a related group of equations with numbers like ‘2.1” and ‘2.2’, and then be able to refer to

the group as a whole: “... in the system of equations (2)...”.

16 Expanded Plain TEX

The commands to do this are \eqsubdef and \egsubdefn. They take one label argument like
their counterparts above, and generally behave in the same way. The difference is in how they
construct the equation number: instead of using just \eqnumber, they also use another counter,
\subeqnumber. This counter is advanced by one at every \eqsubdef or \egsubdefn, and reset to
zero at every \eqdef or \eqdefn.

You use \eqref to refer to subequations as well as main equations.

To put the two together to construct the text that the label will produce, they use a macro
\egsubreftext. This macros takes two arguments, the “main” equation number (which, because
the equation label can be defined as arbitrary text, as described in the previous section, might be
anything at all) and the “sub” equation number (which is always just a number). Eplain’s default
definition just puts a period between them:

\def\eqsubreftext#1#2{#1.#2}%

You can redefine \eqsubreftext to print however you like. For example, this definition makes the
labels print as ‘2a’, ‘2b’, and so on.

\newcount\subref

\def\eqsubreftext#1#2{}
\subref = #2 % The space stops a <number>.
\advance\subref by 96 Y ‘a’ is character code 97.
#1\char\subref

}

Sadly, we must define a new count register, \subref, instead of using the scratch count register
\count255, because ‘#1’ might include other macro calls which use \count255.

4.11 Indexing

Eplain provides support for generating raw material for an index, and for typesetting a sorted
index. A separate program must do the actual collection and sorting of terms, because TEX itself
has no support for sorting.

Eplain’s indexing commands were designed to work with the program Makelndex, available
from ‘ftp.math.utah.edu’ in the directory ‘pub/tex/makeindex’, and from CTAN hosts in
‘tex-archive/indexing/makeindex’; Makelndex is also commonly included in prepackaged TEX
distributions. It is beyond the scope of this manual to explain how to run Makelndex, and all of
its many options. See section “MAKEINDEX” in Makelndex.

The basic strategy for indexing works like this:

1. For a document ‘foo.tex’, Eplain’s indexing commands (e.g., \idx; see the section ‘Indexing
terms’ below) write the raw index material to ‘foo.idx’.

2. Makelndex reads ‘foo.idx’, collects and sorts the index, and writes the result to ‘foo.ind’.

3. Eplain reads and typesets ‘foo.ind’ on a subsequent run of TEX. See the section ‘Typesetting
an index’ below.

If your document needs more than one index, each must have its own file. Therefore, Eplain
provides the command \defineindex, which takes an argument that is a single letter, which
replaces ‘i’ in the filenames and in the indexing command names described below. For example,

\defineindex{m}

defines the command \mdx to write to the file ‘foo.mdx’. Eplain simply does \defineindex{i} to
define the default commands.

Chapter 4: User definitions 17

4.11.1 Indexing terms

Indexing commands in Eplain come in pairs: one command that only writes the index entry to
the ‘.idx’ file (see above section), and one that also typesets the term being indexed. The former
always starts with ‘s’ (for “silent”). In either case, the name always includes ‘Idx’, where I is the
index letter, also described above. Eplain defines the index ‘i’ itself, so that’s what we’ll use in the
names below.

The silent form of the commands take a subterm as a trailing optional argument. For example,
\sidx{truth}[definition of] on page 75 makes an index entry that will eventually be typeset
(by default) as

truth
definition of, 75

Also, the silent commands ignore trailing spaces. The non-silent ones do not.

4.11.1.1 Indexing commands

Here are the commands.

e \sidx{term} [subterm] makes an index entry for term, optionally with subterm subterm.
\idx{term} also produces term as output. Example:

\sidx{truth}[beauty of]
The beauty of truth is \idx{death}.

e \sidxname{First M.}{von Last} [subterm] makes an index entry for ‘von Last, First M.’.
You can change the ‘, ’ by redefining \idxnameseparator. \idxname{First M.}{von Last}
also produces First M. von Last as output. (These commands are useful special cases of \idx
and \sidx.) Example:

\sidxname{Richard}{Stark}
\idxname{Donald}{Westlake} has written many kinds of novels, under
almost as many names.

e \sidxmarked\cs{term} [subterm] makes an index entry for term[subterm], but term will
be put in the index as \cs{term}, but still sorted as just term. \idxmarked\cs{term} also
typesets \cs{term}. This provides for the usual ways of changing the typesetting of index
entries. Example:

\def\article#1{¢‘#1°°}

\sidxmarked\article{Miss Elsa and Aunt Sophie}

Peter Drucker’s \idxmarked\article{The Polanyis} is a remarkable essay
about a remarkable family.

e \sidxsubmarked{term}\cs{subterm} makes an index entry for term, subterm as usual, but
also puts subterm in the index as \cs{term}. \idxsubmarked{term}\cs{subterm} also type-
sets term \cs{subterm}, in the unlikely event that your syntax is convoluted enough to make
this useful. Example:

\def\title#1{{\sl #1}}
\sidxsubmarked{Anderson, Laurie}\title{Strange Angels}
The \idxsubmarked{Anderson}\title{Carmen} is a strange twist.

The commands above rely on Makelndex’s feature for separating sorting of an index entry’s
from its typesetting. You can use this directly by specifying an index entry as sort@typeset. For
example:

18 Expanded Plain TEX

\sidx{Ap-weight@A_π-weight}
will sort as Ap-weight, but print with the proper math. The @ here is Makelndex’s default character
for this purpose. See section “Style File-Makelndex” in Makelndex. To make an index entry with
an @ in it, you have to escape it with a backslash; Eplain provides no macros for doing this.

After any index command, Eplain runs \hookaction{afterindexterm}. Because the index
commands always add a whatsit item to the current list, you may wish to preserve a penalty or
space past the new item. For example, given a conditional \if@aftersctnhead set true when
you're at a section heading, you could do:

\hookaction{afterindexterm}{\if@aftersctnhead \nobreak \fi}
4.11.1.2 Modifying index entries

All the index commands described in the previous section take an initial optional argument
before the index term, which modify the index entry’s meaning in various ways. You can specify
only one of the following in any given command.

These work via Makelndex’s “encapsulation” feature. See Section 4.11.3 [Customizing indexing],
page 20, if you're not using the default characters for the Makelndex operators. The other optional
argument (specifying a subterm) is independent of these.

Here are the possibilities:
begin
end These mark an index entry as the beginning or end of a range. The index entries must
match exactly for Makelndex to recognize them. Example:

\sidx[begin]{future} [Cohen, Leonard]

\sidx [end]{future} [Cohen, Leonard]
will typeset as something like
future,

Cohen, Leonard, 65-94

see This marks an index entry as pointing to another; the real index term is an additional
(non-optional) argument to the command. Thus you can anticipate a term readers may
wish to look up, yet which you have decided not to index. Example:

\sidx[see]{analysis}[archetypall{archetypal criticism}
becomes

analysis,

archetypal, See archetypal criticism
seealso Similar to see (the previous item), but also allows for normal index entries of the

referencing term. Example:

\sidx[seealso]{archetypal criticism}[elements of]{dichotomies}
becomes

archetypal criticism,
elements of, 75, 97, 114, See also dichotomies

(Aside for the academically curious: The archetypally critical book I took these di-
chotomous examples from is Laurence Berman’s The Musical Image, which I happened
to co-design and typeset.)

Chapter 4: User definitions 19

pagemarkup=cs
This puts \cs before the page number in the typeset index, thus allowing you to under-
line definitive entries, italicize examples, and the like. You do mot precede the control
sequence cs with a backslash. (That just leads to expansive difficulties.) Naturally it
is up to you to define the control sequences you want to use. Example:
\def\defn#1{{\sl #1}}
\sidx [pagemarkeup=defn]{indexing}

becomes something like
indexing, \defn{75}

4.11.1.3 Proofing index terms

As you are reading through a manuscript, it is helpful to see what terms have been indexed, so
you can add others, catch miscellaneous errors, etc. (Speaking from bitter experience, I can say
it is extremely error-prone to leave all indexing to the end of the writing, since it involves adding
many TEX commands to the source files.)

So Eplain puts index terms in the margin of each page, if you set \indexproofingtrue. It is
false by default. The terms are typeset by the macro \indexproofterm, which takes a single
argument, the term to be typeset. Eplain’s definition of \indexproofterm just puts it into an
\hbox, first doing \indexprooffont, which Eplain defines to select the font cmtt8. With this
definition long terms run off the page, but since this is just for proofreading anyway, it seems
acceptable.

On the other hand, we certainly don’t want the index term to run into the text of the page,
so Eplain uses the right-hand side of the page rather than the left-hand page (assuming a lan-
guage read left to right here). So \ifodd\pageno, Eplain kerns by \outsidemargin, otherwise by
\insidemargin. If those macros are undefined, \indexsetmargins defines them to be one inch
plus \hoffset.

To get the proofing index entries on the proper page, Eplain defines a new insertion class
\@indexproof. To unbox any index proofing material, Eplain redefines \makeheadline to call
\indexproofunbox before the original \makeheadline. Thus, if you have your own output routine,
that redefines or doesn’t use \makeheadline, it’s up to you to call \indexproofunbox at the
appropriate time.

4.11.2 Typesetting an index

The command \readindexfile{i} reads and typesets the ‘.ind’ file that Makelndex outputs
(from the ‘.idx’ file which the indexing commands in the previous sections write). Eplain defines
a number of commands that support the default Makelndex output.

More precisely, \readindexfile reads \indexfilebasename.index-letternd, where the index-
letter is the argument. \indexfilebasename is \jobname by default, but if you have different
indexes in different parts of a book, you may wish to change it, just as with bibliographies (see
Section 4.3 [Citations], page 5).

Makelndex was designed to work with LaTgX; therefore, by default the ‘.ind’ file starts with
\begin{theindex} and ends with \end{theindex}. If no \begin has been defined, Eplain defines
one to ignore its argument and set up for typesetting the index (see below), and also defines a \end
to ignore its argument. (In a group, naturally, since there is a primitive \end).

20 Expanded Plain TEX

Eplain calls \indexfonts, sets \parindent = Opt, and does \doublecolumns (see Section 4.15
[Multiple columns], page 23) at the \begin{theindex}. \indexfonts does nothing by default; it’s
just there for you to override. (Indexes are usually typeset in smaller type than the main text.)

It ends the setup with \hookrun{beginindex}, so you can override anything you like in that
hook (see Section 6.6.3 [Hooks|, page 37). For example:

\hookaction{beginindex}{\triplecolumns}

MakelIndex turns each main index entry into an \item, subentries into \subitem, and subsuben-
tries into \subsubitem. By default, the first line of main entries are not indented, and subentries
are indented lem per level. Main entries are preceded by a \vskip of \aboveitemskipamount,
Opt plus2pt by default. Page breaks are encouraged before main entries (\penalty -100), but
prohibited afterwards—Eplain has no provision for “continued” index entries.

All levels do the following:
\hangindent = lem
\raggedright
\hyphenpenalty = 10000
Each entry ends with \hookrun{indexitem}, so you can change any of this. For example, to
increase the allowable rag:

\hookaction{indexitem}{\advance\rightskip by 2em}

Finally, MakeIndex outputs \indexspace between each group of entries in the ‘. ind’ file. Eplain
makes this equivalent to \bigbreak.

4.11.3 Customizing indexing

By default, Makelndex outputs ¢, ’ after each term in the index. To change this, you can add
the following to your MakeIndex style (‘.ist’) file:
delim_0 "\\afterindexterm "
delim_1 "\\afterindexterm "
delim_2 "\\afterindexterm "

Eplain makes \afterindexterm equivalent to \quad.
You can also change the keywords Eplain recognizes (see Section 4.11.1.2 [Modifying index
entries|, page 18):
\idxbeginrangeword
‘begin’
\idxendrangeword

‘end

\idxseeword

‘see

\idxseealsoword
‘seealso’

You can also change the magic characters Eplain puts into the ‘. idx’ file, in case you’'ve changed
them in the .ist file:

\idxsubentryseparator
4!7

Chapter 4: User definitions 21

\idxencapoperator

4|7

\idxbeginrangemark

((7

\idxendrangemark

4)7

There is no macro for the actual (‘@ by default) character, because it’s impossible to make it
expand properly.

Finally, you can change the (imaginary) page number that “see also” entries sort as by redefin-
ing \idxmaxpagenum. This is 99999 by default, which is one digit too many for old versions of
Makelndex.

4.12 Justification

Eplain defines three commands to conveniently justify multiple lines of text: \flushright,
\flushleft, and \center.

They all work in the same way; let’s take \center as the example. To start centering lines,
you say \center inside a group; to stop, you end the group. Between the two commands, each
end-of-line in the input file also starts a new line in the output file.

The entire block of text is broken into paragraphs at blank lines, so all the TEX paragraph-
shaping parameters apply in the usual way. This is convenient, but it implies something else that
isn’t so convenient: changes to any linespacing parameters, such as \baselineskip, will have no
effect on the paragraph in which they are changed. TEX does not handle linespacing changes within
a paragraph (because it doesn’t know where the line breaks are until the end of the paragraph).

The space between paragraphs is by default one blank line’s worth. You can adjust this space
by assigning to \blanklineskipamount; this (vertical) glue is inserted after each blank line.

Here is an example:

{\center First line.

Second line, with a blank line before.

}
This produces:
First line.
Second line, with a blank line before.

You may wish to use the justification macros inside of your own macros. Just be sure to put
them in a group. For example, here is how a title macro might be defined:

\def\title{\begingroup\titlefont\center}
\def\endtitle{\endgroup}

22 Expanded Plain TEX

4.13 Tables

Eplain provides a single command, \makecolumns, to make generating one particular kind of
table easier. More ambitious macro packages might be helpful to you for more difficult applica-
tions. The files ‘ruled.tex’ and ‘TXSruled.tex’, available from ‘lifshitz.ph.utexas.edu’ in
‘texis/tables’, is the only one I know of.

Many tables are homogenous, i.e., all the entries are semantically the same. The arrangement
into columns is to save space on the page, not to encode different meanings. In this kind of the
table, it is useful to have the column breaks chosen automatically, so that you can add or delete
entries without worrying about the column breaks.

\makecolumns takes two arguments: the number of entries in the table, and the number of
columns to break them into. As you can see from the example below, the first argument is delimited
by a slash, and the second by a colon and a space (or end-of-line). The entries for the table then
follow, one per line (not including the line with the \makecolumns command itself).

\parindent defines the space to the left of the table. \hsize defines the width of the table. So
you can adjust the position of the table on the page by assignments to these parameters, probably
inside a group.

You can also control the penalty at a page break before the \makecolumns by setting the
parameter \abovecolumnspenalty. Usually, the table is preceded by some explanatory text. You
wouldn’t want a page break to occur after the text and before the table, so Eplain sets it to 10000.
But if the table produced by \makecolumns is standing on its own, \abovecolumnspenalty should
be decreased.

If you happen to give \makecolumns a smaller number of entries than you really have, some
text beyond the (intended) end of the table will be incorporated into the table, probably producing
an error message, or at least some strange looking entries. And if you give \makecolumns a larger
number of entries than you really have, some of the entries will be typeset as straight text, probably
also looking somewhat out of place.

Here is an example:

% Arrange 6 entries into 2 columns:

\makecolumns 6/2: % This line doesn’t have an entry.
one

two

three

four

five

six

Text after the table.

This produces ‘one’, ‘two’, and ‘three’ in the first column, and ‘four’, ‘five’, and ‘six’ in the
second.

4.14 Margins

TEX’s primitives describe the type area in terms of an offset from the upper left corner, and
the width and height of the type. Some people prefer to think in terms of the margins at the top,
bottom, left, and right of the page, and most composition systems other than TEX conceive of the
page laid out in this way. Therefore, Eplain provides commands to directly assign and increment
the margins.

Chapter 4: User definitions 23

\topmargin = dimen

\bottommargin = dimen

\leftmargin = dimen

\rightmargin = dimen
These commands set the specified margin to the dimen given. The = and the spaces
around it are optional. The control sequences here are not TEX registers, despite
appearances; therefore, commands like \showthe\topmargin will not do what you
expect.

\advancetopmargin by dimen
\advancebottommargin by dimen
\advanceleftmargin by dimen

\advancerightmargin by dimen
These commands change the specified margin by the dimen given.

Regardless of whether you use the assignment or the advance commands, Eplain always changes
the type area in response, not the other margins. For example, when TEX starts, the left and right
margins are both one inch. If you then say \leftmargin = 2in, the right margin will remain at
one inch, and the width of the lines (i.e., \hsize) will decrease by one inch.

When you use any of these commands, Eplain computes the old value of the particular margin,
by how much you want to change it, and then resets the values of TEX’s primitive parameters to
correspond. Unfortunately, Eplain cannot compute the right or bottom margin without help: you
must tell it the full width and height of the final output page. It defines two new parameters for
this:

\paperheight
The height of the output page; default is 11truein.

\paperwidth
The width of the output page; default is 8.5truein.

If your output page has different dimensions than this, you must reassign to these parameters,
as in
\paperheight = 1ltruein
\paperwidth = 17truein

4.15 Multiple columns

Eplain provides for double, triple, and quadruple column output: say \doublecolumns,
\triplecolumns, or \quadcolumns, and from that point on, the manuscript will be set in
columns. To go back to one column, say \singlecolumn.

You may need to invoke \singlecolumn to balance the columns on the last page of output.

To do a “column eject”, i.e., move to the top of the next column, do \columnfill. This does not
actually force an eject, however: it merely inserts a kern of size \@normalvsize minus \pagetotal
(\@normalvsize being the usual height of the page; to implement multicolumns, Eplain multiplies
\vsize itself by the number of columns). In most circumstances, a column break will be forced
after this kern (during the column splitting operation when the whole page is output), as desired.

The columns are separated by the value of the dimen parameter \gutter. Default value is two

picas. If you want to add vertical material between the columns, use \gutterbox. For example, to
put a vertical line between columns, define \gutterbox as

24 Expanded Plain TEX

\def\gutterbox{\vbox to \dimenO{\vfil\hbox{\vrule height\dimenO}\vfill}}%
The dimension counter \dimenO contains the height of the column.

All the \...columns macros insert the value of the glue parameter \abovecolumnskip before
the multicolumn text, and the value of the glue parameter \belowcolumnskip after it. The default
value for both of these parameters is \bigskipamount, i.e., one linespace in plain TEX.

The macros take into account only the insertion classes defined by plain TEX; namely, footnotes
and \topinserts. If you have additional insertion classes, you will need to change the implemen-
tation.

Also, Eplain makes insertions the full page width. There is no provision for column-width
insertions.

4.16 Footnotes

The most common reference mark for footnotes is a raised number, incremented on each footnote.
The \numberedfootnote macro provides this. It takes one argument, the footnote text.

If your document uses only numbered footnotes, you could make typing \numberedfootnote
more convenient with a command such as:

\let\footnote = \numberedfootnote

After doing this, you can type your footnotes as \footnote{footnote text}, instead of as
\numberedfootnote{footnote text}.

Eplain keeps the current footnote number in the count register \footnotenumber. So, to reset
the footnote number to zero, as you might want to do at, for example, the beginning of a chapter,
you could say \footnotenumber=0.

Plain TEX separates the footnote marker from the footnote text by an en space (it uses the
\textindent macro). In Eplain, you can change this space by setting the dimension register
\footnotemarkseparation. The default is still an en.

You can produce a space between footenotes by setting the glue register \interfootnoteskip.
The default is zero.

\parskip is also set to zero by default before the beginning of each footnote (but not for the
text of the footnote).

You can also control footnote formatting in a more general way: Eplain expands the token regis-
ter \everyfootnote before a footnote is typeset, but after the default values for all the parameters
have been established. For example, if you want your footnotes to be printed in seven-point type,
indented by one inch, you could say:

\everyfootnote = {\sevenrm \leftskip = 1lin}

By default, an \hrule is typeset above each group of footnotes on a page. You can
control the dimensions of this rule by setting the dimension registers \footnoterulewidth
and \footnoteruleheight. The space between the rule and the first footnote on the page is
determined by the dimension register \belowfootnoterulespace. If you don’t want any rule
at all, set \footenoteruleheight=0pt, and, most likely, \belowfootnoterulespace=0pt. The
defaults for these parameters typeset the rule in the same way as plain TEX: the rule is 0.4 points
high, 2 true inches wide, with 2.6 points below it.

The space above the rule and below the text on the page is controlled by the glue register
\skip\footins. The default is a plain TEX \bigskip.

Chapter 4: User definitions 25

4.17 Fractions

Exercise 11.6 of The TgXbook describes a macro \frac for setting fractions, but \frac never
made it into plain TEX. So Eplain includes it.

\frac typesets the numerator and denominator in \scriptfontO, slightly raised and lowered.
The numerator and denominator are separated by a slash. The denominator must be enclosed in
braces if it’s more than one token long, but the numerator need not be. (This is a consequence of
\frac taking delimited arguments; see page 203 of The TEXbook for an explanation of delimited
macro arguments.)

For example, \frac 23/{64} turns ‘23/64’ into 23/s4.

4.18 Paths

When you typeset long pathnames, electronic mail addresses, or other such “computer” names,
you would like TEX to break lines at punctuation characters within the name, rather than trying
to find hyphenation points within the words. For example, it would be better to break the email
address letters@alpha.gnu.ai.mit.edu at the ‘@’ or a ‘.’, rather than at the hyphenation points
in ‘letters’ and ‘alpha’.

If you use the \path macro to typeset the names, TEX will find these good breakpoints. The
argument to \path is delimited by any character other other than ‘\’ which does not appear in the
name itself. ‘|’ is often a good choice, as in:

\path|letters@alpha.gnu.ai.mit.edul
You can control the exact set of characters at which breakpoints will be allowed by calling
\discretionaries. This takes the same sort of delimited argument; any character in the argument
will henceforth be a valid breakpoint within \path. The default set is essentially all the punctuation
characters:
\discretionaries |7!'@$% " &*x()_+‘—=#{}[]1:";’<>,.7\/|
If for some reason you absolutely must use \ as the delimiter character for \path, you can set

\specialpathdelimiterstrue. (Other delimiter characters can still be used.) TEX then processes
the \path argument about four times more slowly.

4.19 Logos

Eplain redefines the \TeX macro of plain TEX to end with \null, so that the proper spacing
is produced when \TeX is used at the end of a sentence. The other ...TEX macros listed here do
this, also.

Eplain defines \AMSTeX, \BibTeX \AMSLaTeX, \LAMSTeX, \LaTeX \MF, and \SLiTeX to produce
their respective logos. (Sorry, the logos are not shown here.) Some spelling variants of these are
also supported.

4.20 Boxes

The solid rectangle that Eplain uses as a marker in unordered lists (see Section 4.6 [Lists],
page 9) is available by itself: just say \blackbox.

You can create black boxes of arbitrary size with \hrule or \vrule.

26 Expanded Plain TEX

You can also get unfilled rectangles with \makeblankbox. This takes two explicit arguments: the
height and depth of the rules that define the top and bottom of the rectangle. (The two arguments
are added to get the width of the left and right borders, so that the thickness of the border is the
same on all four sides.) It also uses, as implicit arguments, the dimensions of \box0 to define the
dimensions of the rectangle it produces. (The contents of \box0 are ignored.)

Here is an example. This small raised open box is suitable for putting next to numbers in, e.g.,
a table of contents.
\def\openbox{’,
\htO = 1.75pt \dpO = 1.75pt \wd0 = 3.5pt
\raise 2.75pt \makeblankbox{.2pt}{.2pt}
}

Finally, you can put a box around arbitrary text with \boxit. This takes one argument, which
must itself be a (TEX) box, and puts a printed box around it, separated by \boxitspace white
space (3 points by default) on all four sides. For example:

\boxit{\hbox{This text is boxed.}}

The reason that the argument must be a box is that when the text is more than one line long,
TEX cannot figure out the line length for itself. Eplain does set \parindent to zero inside \boxit,
since it is very unlikely you would want indentation there. (If you do, you can always reset it
yourself.)

\boxit uses \ehrule and \evrule so that you can easily adjust the thicknesses of the box rules.
See Section 4.2 [Rules|, page 5.

Chapter 5: Arrow theoretic diagrams 27

5 Arrow theoretic diagrams

This chapter describes definitions for producing commutative diagrams.

Steven Smith wrote this documentation (and the macros).

5.1 Slanted lines and vectors

The macros \drawline and \drawvector provide the capability found in LaTgX’s picture mode
to draw slanted lines and vectors of certain directions. Both of these macros take three arguments:
two integer arguments to specify the direction of the line or vector, and one argument to specify
its length. For example, ‘\drawvector(-4,1){60pt}’ produces the vector

\

—>
60 pt

which lies in the 2d quadrant, has a slope of minus 1/4, and a width of 60 pt.

Note that if an \hbox is placed around \drawline or \drawvector, then the width of the \hbox
will be the positive dimension specified in the third argument, except when a vertical line or vector
is specified, e.g., \drawline(0,1){1in}, which has zero width. If the specified direction lies in the
1st or 2d quadrant (e.g., (1,1) or (-2,3)), then the \hbox will have positive height and zero depth.
Conversely, if the specified direction lies in the 3d or 4th quadrant (e.g., (-1,-1) or (2,-3)), then
the \hbox will have positive depth and zero height.

There are a finite number of directions that can be specified. For \drawline, the absolute value
of each integer defining the direction must be less than or equal to six, i.e., (7,-1) is incorrect,
but (6,-1) is acceptable. For \drawvector, the absolute value of each integer must be less than
or equal to four. Furthermore, the two integers cannot have common divisors; therefore, if a line
with slope 2 is desired, say (2,1) instead of (4,2). Also, specify (1,0) instead of, say, (3,0) for
horizontal lines and likewise for vertical lines.

Finally, these macros depend upon the LaTgX font 1ine10. If your site doesn’t have this font,
ask your system administrator to get it. Future enhancements will include macros to draw dotted
lines and dotted vectors of various directions.

5.2 Commutative diagrams

The primitive commands \drawline and \drawvector can be used to typeset arrow theoretic
diagrams. This section describes (1) macros to facilitate typesetting arrows and morphisms, and
(2) macros to facilitate the construction of commutative diagrams. All macros described in this
section must be used in math mode.

5.2.1 Arrows and morphisms

The macros \mapright and \mapleft produce right and left pointing arrows, respectively. Use
superscript (”) to place a morphism above the arrow, e.g., ‘\mapright~\alpha’; use subscript (_)
to place a morphism below the arrow, e.g., ‘\mapright_{\tilde 1}’. Superscripts and subscripts
may be used simulataneously, e.g., ‘\mapright~\pi_{\rm epimor.}’.

Similarly, the macros \mapup and \mapdown produce up and down pointing arrows, respectively.
Use \rt to place a morphism to the right of the arrow, e.g., ‘\mapup\rt{\rm id}’; use \1ft to

28 Expanded Plain TEX

place a morphism to the left of the arrow, e.g., ‘\mapup\lft\omega’. \1ft and \rt may be used
simultaneously, e.g., ‘\mapdown\1ft\pi\rt{\rm monomor.}’.

Slanted arrows are produced by the macro \arrow, which takes a direction argument (e.g.,
“\arrow(3,-4)’). Use \rt and \1ft to place morphisms to the right and left, respectively, of the
arrow. A slanted line (no arrowhead) is produced with the macro \sline, whose syntax is identical
to that of \arrow.

The length of these macros is predefined by the default TEX dimensions \harrowlength, for
horizontal arrows (or lines), \varrowlength, for vertical arrows (or lines), and \sarrowlength,
for slanted arrows (or lines). To change any of these dimensions, say, e.g., ‘\harrowlength=40pt’.
As with all other TEX dimensions, the change may be as global or as local as you like. Further-
more, the placement of morphisms on the arrows is controlled by the dimensions \hmorphposn,
\vmorphposn, and \morphdist. The first two dimensions control the horizontal and vertical po-
sition of the morphism from its default position; the latter dimension controls the distance of
the morphism from the arrow. If you have more than one morphism per arrow (i.e., a ~/_ or
\1ft/\rt construction), use the parameters \hmorphposnup, \hmorphposndn, \vmorphposnup,
\vmorphposndn, \hmorphposnrt, \hmorphposnlft, \vmorphposnrt, and \vmorphposnlft. The
default values of all these dimensions are provided in the section on parameters that follows below.

There is a family of macros to produce horizontal lines, arrows, and adjoint arrows. The following
macros produce horizontal maps and have the same syntax as \mapright:

\mapright
$X\mapright Y$ = X — Y.

\mapleft $X\mapleft Y$ =X «—Y.
\hline $X\hline Y$ = X — Y.

\bimapright
$X\bimapright Y$ = X —= Y.

\bimapleft
$X\bimapleft Y$ = X =—Y.

\adjmapright
$X\adjmapright Y$ = X =Y.

\adjmapleft
$X\adjmapleft Y$ = X —Y.

\bihline $X\bihline Y$ = X —Y.

There is also a family of macros to produce vertical lines, arrows, and adjoint arrows. The
following macros produce vertical maps and have the same syntax as \mapdown:

\mapdown (a down arrow)

\mapup (an up arrow)
\vline (vertical line)
\bimapdown

(two down arrows)

\bimapup (two up arrows)

Chapter 5: Arrow theoretic diagrams 29

\adjmapdown
(two adjoint arrows; down then up)

\adjmapup
(two adjoint arrows; up then down)

\bivline (two vertical lines)

Finally, there is a family of macros to produce slanted lines, arrows, and adjoint arrows. The
following macros produce slanted maps and have the same syntax as \arrow:

\arrow (a slanted arrow)
\sline (a slanted line)
\biarrow (two straight arrows)

\adjarrow
(two adjoint arrows)

\bisline (two straight lines)

The width between double arrows is controlled by the parameter \channelwidth. The param-
eters \hchannel and \vchannel, if nonzero, override \channelwidth by controlling the horizontal
and vertical shifting from the first arrow to the second.

There are no adornments on these arrows to distinguish inclusions from epimorphisms from
monomorphisms. Many texts, such as Lang’s book Algebra, use as a tasteful alternative the symbol
‘inc’ (in roman) next to an arrow to denote inclusion.

Future enhancements will include a mechanism to draw curved arrows found in, e.g., the Snake
Lemma, by employing a version of the \path macros of Appendix D of The TEXbook.

5.2.2 Construction of commutative diagrams

There are two approaches to the construction of commutative diagrams described here. The
first approach, and the simplest, treats commutative diagrams like fancy matrices, as Knuth does
in Exercise 18.46 of The TpXbook. This case is covered by the macro \commdiag, which is an
altered version of the Plain TEX macro \matrix. An example suffices to demonstrate this macro.
The following commutative diagram (illustrating the covering homotopy property; Bott and Tu,
Differential Forms in Algebraic Topology)

is produced with the code

$$\commdiag{Y&\mapright " f&E\cr \mapdown&\arrow(3,2)\1ft{f_t}&\mapdown\cr
Y\times I&\mapright~{\bar f_t}&X}$$

Of course, the parameters may be changed to produce a different effect. The following commu-
tative diagram (illustrating the universal mapping property; Warner, Foundations of Differentiable

30 Expanded Plain TEX

Manifolds and Lie Groups)

is produced with the code
$$\varrowlength=20pt
\commdiag{V\otimes W\cr \mapup\lft\phi&\arrow(3,-1)\rt{\tilde 1}\cr
V\times W&\mapright~1&U\cr}$$
A diagram containing isosceles triangles is achieved by placing the apex of the triangle in the
center column, as shown in the example (illustrating all constant minimal realizations of a linear
system; Brockett, Finite Dimensional Linear Systems)

RTVI
N
P

R R
R'——F . R

PN
R4
which is produced with the code

$$\sarrowlength=.42\harrowlength

\commdiag{&R"m\cr &\arrow(-1,-1)\1ft{\bf B}\quad \arrow(1,-1)\rt{\bf G}\cr

R n&\mapright~{\bf P}&R"n\cr

\mapdown\1ft{e"{{\bf A}t}}&&\mapdown\rt{e {{\bf F}t}}\cr

R n&\mapright~{\bf P}&R"n\cr

&\arrow(1,-1)\1ft{\bf C}\quad \arrow(-1,-1)\rt{\bf H}\cr

&R-q\cr}$$

Other commutative diagram examples appear in the file commdiags.tex, which is distributed

with this package.

In these examples the arrow lengths and line slopes were carefully chosen to blend with each
other. In the first example, the default settings for the arrow lengths are used, but a direction
for the arrow must be chosen. The ratio of the default horizontal and vertical arrow lengths is
approximately the golden mean v = 1.618...; the arrow direction closest to this mean is (3,2).
In the second example, a slope of —1/3 is desired and the default horizontal arrow length is 60
pt; therefore, choose a vertical arrow length of 20 pt. You may affect the interline glue settings
of \commdiag by redefining the macro \commdiagbaselines. (cf. Exercise 18.46 of The TEXbook
and the section on parameters below.)

The width, height, and depth of all morphisms are hidden so that the morphisms’ size do
not affect arrow positions. This can cause a large morphism at the top or bottom of a diagram
to impinge upon the text surrounding the diagram. To overcome this problem, use TEX’s
\noalign primitive to insert a \vskip immediately above or below the offending line, e.g.,
‘$$\commdiag{\noalign{\vskip6pt}X&\mapright~"\int&Y¥\cr ...}

Chapter 5: Arrow theoretic diagrams 31

The macro \commdiag is too simple to be used for more complicated diagrams, which may have
intersecting or overlapping arrows. A second approach, borrowed from Francis Borceux’s Diagram
macros for LaTgX, treats the commutative diagram like a grid of identically shaped boxes. To
compose the commutative diagram, first draw an equally spaced grid, e.g.,

on a piece of scratch paper. Then draw each element (vertices and arrows) of the commutative
diagram on this grid, centered at each grid point. Finally, use the macro \gridcommdiag to
implement your design as a TgX alignment. For example, the cubic diagram

that appears in Francis Borceux’s documentation can be implemented on a 7 by 7 grid, and is
achieved with the code

$$\harrowlength=48pt \varrowlength=48pt \sarrowlength=20pt
\def\cross#1#2{\setbox0=\hbox{$#1$}/

\hbox to\wd0{\hss\hbox{$#2$}\hss}\1lap{\unhbox0}}
\gridcommdiag{&&B&&\mapright "b&&D\cr
&\arrow(1,1)\1ft a&&&&\arrow(1,1)\1ft d\cr
A&&\cross{\hmorphposn=12pt\mapright~c}{\vmorphposn=-12pt\mapdown\1ft £}
&&C&&\mapdown\rt h\cr\cr
\mapdown\1ft e&&F&&\cross{\hmorphposn=-12pt\mapright_j}
{\vmorphposn=12pt\mapdown\rt gl&&H\cr
&\arrow(1,1)\1ft i&&&&\arrow(1l,1)\rt 1\cr
E&&\mapright_k&&G\cr}$$

The dimensions \hgrid and \vgrid control the horizontal and vertical spacing of the grid used by
\gridcommdiag. The default setting for both of these dimensions is 15 pt. Note that in the example
of the cube the arrow lengths must be adjusted so that the arrows overlap into neighboring boxes
by the desired amount. Hence, the \gridcommdiag method, albeit more powerful, is less automatic
than the simpler \commdiag method. Furthermore, the ad hoc macro \cross is introduced to
allow the effect of overlapping arrows. Finally, note that the positions of four of the morphisms are
adjusted by setting \hmorphposn and \vmorphposn.

32 Expanded Plain TEX

One is not restricted to a square grid. For example, the proof of Zassenhaus’s Butterfly Lemma
can be illustrated by the diagram (appearing in Lang’s book Algebra)

U V
uw(UNYV) UnVv
u(U Nv) (unNV)v

u v
unV UnNw

This diagram may be implemented on a 9 by 12 grid with an aspect ratio of 1/2, and is set with
the code
$$\hgrid=16pt \vgrid=8pt \sarrowlength=32pt
\def\cross#1#2{\setbox0=\hbox{$#1$1}7,
\hbox to\wdO{\hss\hbox{$#2$}\hss}\1lap{\unhbox0}}
\def\1#1{\11lap{$#1$\hskip.5em}}
\def\r#1{\rlap{\hskip.5em$#1$}}
\gridcommdiag{&&U&&&&V\cr &&\bullet&&&&\bullet\cr
&&\sarrowlength=16pt\sline(0, 1) &&&&\sarrowlength=16pt\sline (0, 1) \cr
&&\1{u(U\cap V)}\bullet&&&&\bullet\r{(U\cap V)vl}\cr
&&&\sline (2,-1)&&\sline(2,1) \cr
&&\cross{=}{\sline (0, 1) }&&\bullet&&\cross{=}{\sline (0, 1) }\cr\cr
&&\1{"{\textstyle u(U\cap v)}}\bullet&&\cross{=}{\sline(0,1)}&&
\bullet\r{"{\textstyle(u\cap V)v}}\cr
&\sline(2,1)&&\sline(2,-1)&&\sline(2,1)&&\sline(2,-1) \cr
\1{u}\bullet&&&&\bullet&&&&\bullet\r{v}\cr
&\sline(2,-1)&&\sline(2,1)&&\sline(2,-1)&&\sline(2,1) \cr
&&\bullet&&&&\bullet\cr &&u\cap V&&&&U\cap v\cr}$$
Again, the construction of this diagram requires careful choices for the arrow lengths and is
facilitated by the introduction of the ad hoc macros \cross, \r, and \1. Note also that superscripts
were used to adjust the position of the vertices u(U Nwv) and (u N V)v. Many diagrams may be
typeset with the predefined macros that appear here; however, ingenuity is often required to handle
special cases.

5.2.3 Commutative diagram parameters

The following is a list describing the parameters used in the commutative diagram macros.
These dimensions may be changed globally or locally.

\harrowlength
(Default: 60 pt) The length of right or left arrows.

\varrowlength
(Default: 0.618\harrowlength) The length of up or down arrows.

\sarrowlength
(Default: 60 pt) The horizontal length of slanted arrows.

Chapter 5: Arrow theoretic diagrams 33

\hmorphposn
(Default: 0 pt) The horizontal position of the morphism with respect to its default posi-
tion. There are also the dimensions \hmorphposnup, \hmorphposndn, \hmorphposnrt,
and \hmorphposnlft for ~/_ or \1ft/\rt constructions.

\vmorphposn
(Default: 0 pt) The vertical position of the morphism with respect to its default posi-
tion. There are also the dimensions \vmorphposnup, \vmorphposndn, \vmorphposnrt,
and \vmorphposnlft for ~/_ or \1ft/\rt constructions.

\morphdist
(Default: 4 pt) The distance of morphisms from slanted lines or arrows.

\channelwidth
(Default: 3 pt) The distance between double lines or arrows.

\hchannel, \vchannel
(Defaults: 0 pt) Overrides \channelwidth. The horizontal and vertical shifts between
double lines or arrows.

\commdiagbaselines
(Default: \baselineskip=15pt \lineskip=3pt \lineskiplimit=3pt) The parame-
ters used by \commdiag for setting interline glue.

\hgrid (Default: 15 pt) The horizontal spacing of the grid used by \gridcommdiag.
\vgrid (Default: 15 pt) The vertical spacing of the grid used by \gridcommdiag.

34 Expanded Plain TEX

6 Programming definitions

The definitions in this section are only likely to be useful when you are writing nontrivial macros,
not when writing a document.

6.1 Category codes

Plain TEX defines \active (as the number 13) for use in changing category codes. Although the
author of The TEXbook has “intentionally kept the category codes numeric”, two other categories
are commonly used: letters (category code 11) and others (12). Therefore, Eplain defines \letter
and \other.

Sometimes it is cleaner to make a character active without actually writing a \catcode com-
mand. The \makeactive command takes a character as an argument to make active (and ignores
following spaces). For example, here are two commands which both make \ active:

\makeactive ‘\\ \makeactive92

Usually, when you give a definition to an active character, you have to do so inside a group where
you temporarily make the character active, and then give it a global definition (cf. the definition
of \obeyspaces in The TgXbook). This is inconvenient if you are writing a long macro, or if the
character already has a global definition you do not wish to transcend. Eplain provides \letreturn,
which defines the usual end-of-line character to be the argument. For example:

\def\mymacro{... \letreturn\myreturn ... }
\mymacro hello
there
The end-of-line between ‘hello’ and ‘there’ causes \myreturn to be expanded.

The TgXbook describes \uncatcodespecials, which makes all characters which are normally
“special” into “other” characters, but the definition never made it into plain TEX. Eplain therefore
defines it.

Finally, \percentchar expands into a literal ‘%’ character. This is useful when you \write TEX
output to a file, and want to avoid spurious spaces. For example, Eplain writes a \percentchar after
the definition of cross-references. The macros \1lbracechar and \rbracechar expand similarly.

6.2 Allocation macros

Plain TEX provides macros that allocate registers of each primitive type in TEX, to prevent
different sets of macros from using the same register for two different things. The macros are
all named starting with ‘new’, e.g., \newcount allocates a new “count” (integer) register. Such
allocations are usually needed only at the top level of some macro definition file; therefore, plain
TEX makes the allocation registers \outer, to help find errors. (The error this helps to find is a
missing right brace in some macro definition.)

Sometimes, however, it is useful to allocate a register as part of some macro. An outer control
sequence cannot be used as part of a macro definition (or in a few other contexts: the parameter
text of a definition, an argument to a definition, the preamble of an alignment, or in conditional
text that is being skipped). Therefore, Eplain defines “inner” versions of all the allocation macros,
named with the prefix ‘inner’: \innernewbox, \innernewcount, \innernewdimen, \innernewfam,
\innernewhelp, \innernewif, \innernewinsert, \innernewlanguage, \innernewread,
\innernewskip, \innernewtoks, \innernewwrite.

Chapter 6: Programming definitions 35

You can also define non-outer versions of other macros in the same way that Eplain defines the
above. The basic macro is called \innerdef:

\innerdef \innername {outername}

The first argument (\innername) to \innerdef is the control sequence that you want to define.
Any previous definition of \innername is replaced. The second argument (outername) is the char-
acters in the name of the outer control sequence. (You can’t use the actual control sequence name,
since it’s outer!)

If the outer control sequence is named \cs, and you want to define innercs as the inner one,
you can use \innerinnerdef, which is just an abbreviation for a call to \innerdef. For example,
these two calls are equivalent:

\innerdef\innerproclaim{proclaim}
\innerinnerdef{proclaim}

6.3 Iteration

You can iterate through a comma-separated list of items with \for. Here is an example:

\for\name:=karl,kathy\do{’
\message{\namel}J,
+h
This writes ‘karl’ and ‘kathy’ to the terminal. Spaces before or after the commas in the list,
or after the :=, are not ignored.

\for expands the iterated values fully (with \edef), so this is equivalent to the above:

\def\namelist{karl,kathy}/
\for\name:=\namelist\do ...

6.4 Macro arguments

It is occasionally useful to redefine a macro that takes arguments to do nothing. Eplain defines
\gobble, \gobbletwo, and \gobblethree to swallow one, two, and three arguments, respectively.

For example, if you want to produce a “short” table of contents—one that includes only chapters,
say—the easiest thing to do is read the entire .toc file (see Section 4.8 [Contents|, page 12), and
just ignore the commands that produce section or subsection entries. To be specific:

\let\tocchapterentry = \shorttocchapter
\let\tocsectionentry = \gobbletwo
\let\tocsubsectionentry = \gobbletwo
\readtocfile

(Of course, this assumes you only have chapters, sections, and subsections in your document.)

In addition, Eplain defines \eattoken to swallow the single following token, using \let. Thus,
\gobble followed by ‘{...3} ignores the entire brace-enclosed text. \eattoken followed by the
same ignores only the opening left brace.

Eplain defines a macro \identity which takes one argument and expands to that argument.
This may be useful if you want to provide a function for the user to redefine, but don’t need to
do anything by default. (For example, the default definition of \eqconstruct (see Section 4.10.1.1
[Formatting equation references|, page 15) is \identity.)

36 Expanded Plain TEX

You may also want to read an optional argument. The established convention is that optional
arguments are put in square brackets, so that is the syntax Eplain recognizes. Eplain ignores space
tokens before an optional argument, via \futurenonspacelet.

You test for an optional argument by using \@getoptionalarg. It takes one argument, a control
sequence to expand after reading the argument, if present. If an optional argument is present, the
control sequence \@optionalarg expands to it; otherwise, \@optionalarg is \empty. You must
therefore have the category code of @ set to 11 (letter). Here is an example:

\catcode‘@=\letter
\def\cmd{\@getoptionalarg\finishcmd}
\def\finishcmd{%
\ifx\@optionalarg\empty
% No optional argument present.
\else
% One was present.
\fi
}

If an optional argument contains another optional argument, the inner one will need to be

enclosed in braces, so TEX does not mistake the end of the first for the end of the second.

6.5 Converting to characters

Eplain defines \xrlabel to produce control sequence names for cross-reference labels, et al.
This macro expands to its argument with an ‘_” appended. (It does this because the usual use of
\xrlabel is to generate a control sequence name, and we naturally want to avoid conflicts between
control sequence names.)

Because \xrlabel is fully expandable, to make a control sequence name out of the result you
need only do

\csname \xrlabel{label}\endcsname

The \csname primitive makes a control sequence name out of any sequence of character tokens,
regardless of category code. Labels can therefore include any characters except for ‘\’, ‘{’, ‘}’, and
‘#’, all of which are used in macro definitions themselves.

\sanitize takes a control sequence as an argument and converts the expansion of the con-
trol sequence into a list of character tokens. This is the behavior you want when writing in-
formation like chapter titles to an output file. For example, here is part of the definition of
\writenumberedtocentry; #2 is the title that the user has given.

\def\temp{#2}%
'.iwrite\tocfile{%
iéénitize\temp
b
6.6 Expansion

This section describes some miscellanous macros for expansion, etc.

Chapter 6: Programming definitions 37

6.6.1 \csn and \ece

\csn{name} simply abbreviates \csname name \encsname, thus saving some typing. The extra
level of expansion does take some time, though, so I don’t recommend it for an inner loop.
\ece{token}{name} abbreviates
\expandafter token \csname name \endcsname
For example,
\def\fontabbrevdef#1#2{\ece\def{@#1font }H{#2}}
\fontabbrevdef{normal}{ptmr}

defines a control sequence \@normalfont to expand to ptmr.

6.6.2 \edefappend

\edefappend is a way of adding on to an existing definition. It takes two arguments: the first
is the control sequence name, the second the new tokens to append to the definition. The second
argument is fully expanded (in the \edef that redefines the control sequence).

For example:

\def\foo{abc}
\def\bar{xyz}
\edefappend\foo{\bar karl}

results in \foo being defined as ‘abcxyzkarl’.

6.6.3 Hooks

A hook is simply a name for a group of actions which is executed in certain places—presumably
when it is most useful to allow customization or modification. TEX already provides many builtin
hooks; for example, the \every ... token lists are all examples of hooks.

Eplain provides several macros for adding actions to hooks. They all take two arguments: the
name of the hook and the new actions.

hookaction name actions
hookappend name actions

hookprepend name actions
Each of these adds actions to the hook name. (Any previously-defined actions are
retained.) name is not a control sequence, but rather the characters of the name.

hookactiononce name \cs
\hookactiononce adds cs to name, like the macros above, but first it adds

\globalllet \cs \relax

to the definition of \c¢s. (This implies \cs must be a true expandable macro, not a
control sequence \let to a primitive or some other such thing.) Thus, \cs is expanded
the next time the hook name is run, but it will disappear after that.

The \global is useful because \hookactiononce is most useful when the grouping
structure of the TEX code could be anything. Neither this nor the other hook macros
do global assignments to the hook variable itself, so TEX’s usual grouping rules apply.

38 Expanded Plain TEX

The companion macro to defining hook actions is \hookrun, for running them. This takes a
single argument, the name of the hook. If no actions for the hook are defined, no error ensues.

Here is a skeleton of general \begin and \end macros that run hooks, and a couple of calls to
define actions. The use of \hookprepend for the begin action and \hookappend for the end action
ensures that the actions are executed in proper sequence with other actions (as long as the other
actions use \hookprepend and \hookappend also).

\def\begin#1{ ... \hookrun{begin} ... }
\def\end#1{ ... \hookrun{end} ... }
\hookprepend{begin}\start_underline
\hookappend{end}\finish_underline

6.6.4 Properties

A property is a name/value pair associated with another symbol, traditionally called an atom.
Both atom and property names are control sequence names.

Eplain provides two macros for dealing with property lists: \setproperty and \getproperty.

\setproperty atom propname value
\setproperty defines the property property on the atom atom to be value. atom and
propname can be anything acceptable to \csname. value can be anything.

\getproperty atom propname
\getproperty expands to the value stored for propname on atom. If propname is
undefined, it expands to nothing (i.e., \empty).

The idea of properties originated in Lisp (I believe). There, the implementation truly does
associate properties with atoms. In TEX, where we have no builtin support for properties, the
association is only conceptual.

The following example typesets ‘xyz’.

\setproperty{at{prt{xyz}
\getproperty{at{pr}

6.6.5 \expandonce

\expandonce is defined as \expandafter\noexpand. Thus, \expandonce token expands token
once, instead of to TEX primitives. This is most useful in an \edef.
For example, the following defines \temp to be \foo, not ‘abc’.

\def\foo{abc}
\def\bar{\foo}
\edef\temp{\expandonce\bar}

6.6.6 \ifundefined

\ifundefined{cs} t \else \fi expands the t text if the control sequence \cs is undefined or
has been \let to \relax, and the f text otherwise.

Since \ifundefined is not a primitive conditional, it cannot be used in places where TEX might
skip tokens “at high speed”, e.g., within another conditional—TEX can’t match up the \if’s and
\fi’s.

This macro was taken directly from The TEXbook, page 308.

Chapter 6: Programming definitions 39

6.6.7 \futurenonspacelet

The \futurelet primitive allows you to look at the next token from the input. Sometimes,
though, you want to look ahead ignoring any spaces. This is what \futurenonspacelet does. It is
otherwise the same as \futurelet: you give it two control sequences as arguments, and it assigns
the next nonspace token to the first, and then expands the second. For example:

\futurenonspacelet\temp\finishup
\def\finishup{\ifx\temp ...}

6.7 Obeying spaces

\obeywhitespace makes both end-of-lines and space characters in the input be respected in the
output. Unlike plain TEX’s \obeyspaces, even spaces at the beginnings of lines turn into blank
space.

By default, the size of the space that is produced by a space character is the natural space of
the current font, i.e., what \ produces.

Ordinarily, a blank line in the input produces as much blank vertical space as a line of text
would occupy. You can adjust this by assigning to the parameter \blanklineskipamount: if you
set this negative, the space produced by a blank line will be smaller; if positive, larger.

Tabs are not affected by this routine. In particular, if tabs occur at the beginning of a line, they
will disappear. (If you are trying to make TEX do the “right thing” with tabs, don’t. Use a utility
program like expand instead.)

6.8 Writing out numbers

\numbername produces the written-out form of its argument, i.e., ‘zero’ through ‘ten’ for the
numbers 0-10, and numerals for all others.

6.9 Mode-specific penalties

TEX’s built-in \penalty command simply appends to the current list, no matter what kind of
list it is. You might intend a particular penalty to always be a “vertical” penalty, however, i.e.,
appended to a vertical list. Therefore, Eplain provides \vpenalty and \hpenalty which first leave
the other mode and then do \penalty.

More precisely, \vpenalty inserts \par if the current mode is horizontal, and \hpenalty inserts
\leavevmode if the current mode is vertical. (Thus, \vpenalty cannot be used in math mode.)

6.10 Auxiliary files

It is common to write some information out to a file to be used on a subsequent run. But when it
is time to read the file again, you only want to do so if the file actually exists. \testfileexistence
is given an argument which is appended to \jobname, and sets the conditional \iffileexists
appropriately.

For example:

40 Expanded Plain TEX

\testfileexistence{toc}}
\iffileexists

\input \jobname.toc
\fi

6.11 User-defined environments

Plain TEX does not provide “named” block structures, only the anonymous \begingroup and
\endgroup pair. The disadvantage of this is that when there are several such groups and one is
mismatched, it can be difficult to find the error. Eplain provides a named block structure so that
if you forget an \environment or an \endenvironment, you will (probably) get an error message
about it.

For example:

\def\itpar{
\environment{@italicpar}
\it\par
}
\def\enditpar{
\par
\endenvironment{@italicparl}ty,
}
which could then be used to set italicized paragraphs:
\itpar
If I reprehend anything in this world, it is the use of my oracular
tongue, and a nice derangement of epitaphs!
\enditpar

The above sort of environment allows nesting. But environments shouldn’t always be allowed
to nest. Put the control sequence \checkenv at the beginning of a macro that is going to define
an environment that should not be nested.

Appendix A: GNU GENERAL PUBLIC LICENSE 41

Appendix A GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (©) 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is covered by the GNU
Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want it,
that you can change the software or use pieces of it in new free programs; and that you know you
can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you
if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or can
get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and

passed on, we want its recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect making
the program proprietary. To prevent this, we have made it clear that any patent must be licensed
for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

1. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License.

42

Expanded Plain TEX

The “Program”, below, refers to any such program or work, and a “work based on the Pro-
gram” means either the Program or any derivative work under copyright law: that is to say, a
work containing the Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included without limitation in
the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of the
Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no charge
to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must cause
it, when started running for such interactive use in the most ordinary way, to print or
display an announcement including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user how to view a copy
of this License. (Exception: if the Program itself is interactive but does not normally
print such an announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Program.

Appendix A: GNU GENERAL PUBLIC LICENSE 43

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium does
not bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do
one of the following:

a. Accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Sections 1 and 2 above on a medium customarily used
for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third party, for
a charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms
of Sections 1 and 2 above on a medium customarily used for software interchange; or,

¢. Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if
you received the program in object code or executable form with such an offer, in accord
with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to
it. For an executable work, complete source code means all the source code for all modules
it contains, plus any associated interface definition files, plus the scripts used to control com-
pilation and installation of the executable. However, as a special exception, the source code
distributed need not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Pro-
gram is void, and will automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

6. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Program (or any work based on the Program), you indicate your acceptance
of this License to do so, and all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

7. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

44

8.

10.

11.

12.

Expanded Plain TEX

If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply
in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent application of that system:;
it is up to the author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS

Appendix A: GNU GENERAL PUBLIC LICENSE 45

13.

AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFOR-
MANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO
YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CON-
SEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES
OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

46 Expanded Plain TEX

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and change
under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively convey the exclusion of warranty; and each file should have at
least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive
mode:
Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than ‘show
w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign
a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you may consider it more useful to permit linking
proprietary applications with the library. If this is what you want to do, use the GNU Library
General Public License instead of this License.

Appendix B: Regain your programming freedom 47

Appendix B Regain your programming freedom

Until a few years ago, programmers in the United States could write any program they wished.
This freedom has now been taken away by two developments: software patents, which grant the
patent holder an absolute monopoly on some programming technique, and user interface copyright,
which forbid compatible implementations of an existing user interface.

In Europe, especially through the GATT treaty, things are rapidly approaching the same pass.

B.1 Software patents

The U.S. Patent and Trademark Office has granted numerous software patents on software tech-
niques. Patents are an absolute monopoly—independent reinvention is precluded. This monopoly
lasts for seventeen years, i.e., forever (with respect to computer science).

One patent relevant to TEX is patent 4,956,809, issued to the Mark Williams company on
September 11, 1990, applied for in 1982, which covers (among other things)

representing in a standardized order consisting of a standard binary structure file stored
on auxiliary memory or transported on a communications means, said standardized or-
der being different from a different order used on at least one of the different computers;

Converting in each of the different computers binary data read from an auxiliary data
storage or communications means from the standardized order to the natural order
of the respective host computer after said binary data are read from said auxiliary
data storage or communications means and before said binary data are used by the
respective host computer; and

Converting in each of the different computers binary data written into auxiliary data
storage or communications means from the natural order of the respective host com-
puter to the standardized order prior to said writing.

. in other words, storing data on disk in a machine-independent order, as the DVI, TFM, GF,
and PK file formats specify. Even though TEX is “prior art” in this respect, the patent was granted
(the patent examiners not being computer scientists, even less computer typographers). Since there
is a strong presumption in the courts of a patent’s validity once it has been granted, there is a good
chance that users or implementors of TEX could be successfully sued on the issue.

As another example, the X window system, which was intended to be able to be used freely by
everyone, is now being threatened by two patents: 4,197,590 on the use of exclusive-or to redraw
cursors, held by Cadtrak, a litigation company (this has been upheld twice in court); and 4,555,775,
held by AT&T, on the use of backing store to redraw windows quickly.

Here is one excerpt from a recent mailing by the League for Programming Freedom (see Sec-
tion B.3 [What to do?], page 49) which I feel sums up the situation rather well. It comes from an
article in Think magazine, issue #5, 1990. The comments after the quote were written by Richard
Stallman.

“You get value from patents in two ways,” says Roger Smith, IBM Assistant General
Counsel, intellectual property law. “Through fees, and through licensing negotiations
that give IBM access to other patents.

“The IBM patent portfolio gains us the freedom to do what we need to do through
cross-licensing—it gives us access to the inventions of others that are the key to rapid
innovation. Access is far more valuable to IBM than the fees it receives from its 9,000

48 Expanded Plain TEX

active patents. There’s no direct calculation of this value, but it’s many times larger
than the fee income, perhaps an order of magnitude larger.”

This information should dispel the belief that the patent system will “protect” a small software
developer from competition from IBM. IBM can always find patents in its collection which the
small developer is infringing, and thus obtain a cross-license.

However, the patent system does cause trouble for the smaller companies which, like IBM, need
access to patented techniques in order to do useful work in software. Unlike IBM, the smaller
companies do not have 9,000 patents and cannot usually get a cross-license. No matter how hard
they try, they cannot have enough patents to do this.

Only the elimination of patents from the software field can enable most software developers to
continue with their work.

The value IBM gets from cross-licensing is a measure of the amount of harm that the patent
system would do to IBM if IBM could not avoid it. IBM’s estimate is that the trouble could easily
be ten times the good one can expect from one’s own patents—even for a company with 9,000 of
them.

B.2 User interface copyright

(This section is copied from the GCC manual, by Richard Stallman.)
This section is a political message from the League for Programming Freedom to the

users of the GNU font utilities. It is included here as an expression of support for the
League on my part.

Apple, Lotus and Xerox are trying to create a new form of legal monopoly: a copyright on a
class of user interfaces. These monopolies would cause serious problems for users and developers
of computer software and systems.

Until a few years ago, the law seemed clear: no one could restrict others from using a user
interface; programmers were free to implement any interface they chose. Imitating interfaces,
sometimes with changes, was standard practice in the computer field. The interfaces we know
evolved gradually in this way; for example, the Macintosh user interface drew ideas from the Xerox
interface, which in turn drew on work done at Stanford and SRI. 1-2-3 imitated VisiCalc, and dBase
imitated a database program from JPL.

Most computer companies, and nearly all computer users, were happy with this state of affairs.
The companies that are suing say it does not offer “enough incentive” to develop their products,
but they must have considered it “enough” when they made their decision to do so. It seems they
are not satisfied with the opportunity to continue to compete in the marketplace—not even with a
head start.

If Xerox, Lotus, and Apple are permitted to make law through the courts, the precedent will
hobble the software industry:

e Gratuitous incompatibilities will burden users. Imagine if each car manufacturer had to arrange
the pedals in a different order.

e Software will become and remain more expensive. Users will be “locked in” to proprietary
interfaces, for which there is no real competition.

e Large companies have an unfair advantage wherever lawsuits become commonplace. Since

they can easily afford to sue, they can intimidate small companies with threats even when
they don’t really have a case.

Appendix B: Regain your programming freedom 49

e User interface improvements will come slower, since incremental evolution through creative
imitation will no longer be permitted.

e Even Apple, etc., will find it harder to make improvements if they can no longer adapt the
good ideas that others introduce, for fear of weakening their own legal positions. Some users
suggest that this stagnation may already have started.

e If you use GNU software, you might find it of some concern that user interface copyright
will make it hard for the Free Software Foundation to develop programs compatible with the
interfaces that you already know.

B.3 What to do?

(This section is copied from the GCC manual, by Richard Stallman.)

To protect our freedom from lawsuits like these, a group of programmers and users have formed
a new grass-roots political organization, the League for Programming Freedom.

The purpose of the League is to oppose new monopolistic practices such as user-interface copy-
right and software patents; it calls for a return to the legal policies of the recent past, in which
these practices were not allowed. The League is not concerned with free software as an issue, and
not affiliated with the Free Software Foundation.

The League’s membership rolls include John McCarthy, inventor of Lisp, Marvin Minsky,
founder of the Artificial Intelligence lab, Guy L. Steele, Jr., author of well-known books on Lisp and
C, as well as Richard Stallman, the developer of GNU CC. Please join and add your name to the
list. Membership dues in the League are $42 per year for programmers, managers and professionals;
$10.50 for students; $21 for others.

The League needs both activist members and members who only pay their dues.

To join, or for more information, phone (617) 492-0023 or write to:

League for Programming Freedom
1 Kendall Square #143

P.O. Box 9171

Cambridge, MA 02139

You can also send electronic mail to league@prep.ai.mit.edu.

Here are some suggestions from the League for things you can do to protect your freedom to
write programs:

e Don’t buy from Xerox, Lotus or Apple. Buy from their competitors or from the defendants
they are suing.

e Don’t develop software to work with the systems made by these companies.
e Port your existing software to competing systems, so that you encourage users to switch.
e Write letters to company presidents to let them know their conduct is unacceptable.

e Tell your friends and colleagues about this issue and how it threatens to ruin the computer
industry.

e Above all, don’t work for the look-and-feel plaintiffs, and don’t accept contracts from them.
e Write to Congress to explain the importance of this issue.

House Subcommittee on Intellectual Property
2137 Rayburn Bldg
Washington, DC 20515

50

Expanded Plain TEX

Senate Subcommittee on Patents, Trademarks and Copyrights
United States Senate
Washington, DC 20510

(These committees have received lots of mail already; let’s give them even more.)

Express your opinion! You can make a difference.

Macro index

Macro index

auxfile ... 6, 13
bblfile ... 6
bibfile ... 6
bstfiles. ... 6
dmtfile. o 2,3
ddx files ... 16
dnd files ... 16
tocfile ... 12

A

abovecolumnskip............ 24
abovecolumnspenalty.................coiinoi... 22
abovelistpenalty............................... 10
abovelistskip................ 10
abovelistskipamount............................ 10
AdJarToW ..ottt 29
adjmapdowno 29
adjmapleftl 28
adjmaprightl 28
adjmapup 29
advancebottommargin............... 23
advanceleftmargin.............................. 23
advancerightmargin............................. 23
advancetopmargin................. 23
afterindexterm.................. 20
afterindexterm hook................. 18
AMSLaTeX ...t 25
amsppt.sty ... 4
AMSTeX . oo 25
ATTOW .« ottt et et e e e e e 28, 29

bblem..... ... 8
bblfilebasename.................... 6
bblhook......... ... 8
bblnewblock 8
bblrm....... .. 8
bblsc.. ... 8
begin for index entries............... 18
begin{theindex}............... 19
beginindex hook L 20
beginlist ... 11
belowcolumnskip..........c.ooviiiiiiiia... 24
belowfootnoterulespace 24

belowlistskip............ 10

belowlistskipamount

biblabelcontents
biblabelextraspace
biblabelprint
biblabelwidth

blanklineskipamount in justified text
blanklineskipamount in obeyed text

definecontentsfile
defineindex

discretionaries
displaylines
doublecolumns

51

52

E

eattoken 35
G L it 37
edefappend 37
ehrule. 5
end for index entries 18
end{theindex} 19
endlist........ 11
endnumberedlistl 9
endorderedlist 9
endunorderedlist...................., 9
eplain....... ... 3
EPlAIN.AUK .« v ottt 2
€Qalignno ... 9
eqconstruct 15
eqdef 14
eqdefn. 14
equumber 14
eqgprint. ... 15
eqref 15
eqrefn. 15
egsubdef 16
egsubdefn 16
egsubreftext 16
everyfootnote i 24
eVIULE. ... 5
eXpPandonCe ...t 38

F

fileexists (conditional)..................... ..., 39
flushleft e 21
flushright 21
fmtversion 1
footnotemarkseparation 24
footnoteruleheight................ 24
footnoterulewidth.............................. 24
for . . 35
frac. ... 25
fullmonthname i .. 9
futurenonspacelet..........., 39

generaldisplay 9
getproperty 38
gloggingallot 5
gobble. 35
gobbletwo 35
gridcommdiag i 31
gtracingall, 5

Expanded Plain TEX

gutterbox L 23

H

hangindent for index entries...................... 20
harrowlength............. 28, 32
hchannel 33
hgrid 31, 33
hline....... 28
hmorphposn............. 28, 33
hmorphposndn................................ 28, 33
hmorphposnlft............................... 28, 33
hmorphposnrt......... 28, 33
hmorphposnup................ 28, 33
hoffset..... 19
hookaction 37
hookactiononce..................... 37
hookappend 37
hookprepend 37
hookrun............ 38
hruledefaultdepth............................... 5
hruledefaultheight.............................. 5
hsize..... 23
hyphenpenalty for index entries 20

identity ... 35
IAX . 17
idxbeginrangemark................ 21
idxbeginrangeword.............................. 20
idxencapoperator 21
idxendrangemark................ 21
idxendrangeword.....................iia.., 20
idxmarked 17
idxname....... ... 17
idxnameseparator................ 17
1dXPagenUIot 21
idxseealsoword.............. ... i, 20
idxseewordl 20
idxsubentryseparator........................... 20
idxsubmarked i 17
iffileexists 39
ifrewritetocfile.............. 12
ifundefinedl 38
indexfilebasename.............................. 19
indexfonts 19
indexitem hook i il 20
indexprooffont L., 19
indexproofterm........... L., 19
indexproofunbox............. L.l 19
indexsetmargins................., 19
INdeXSPpaceot 20

Macro index

innerdef 35
innerinnerdef L. 35
InnernewboXottt 34
innernewcount 34
innernewdimen 34
innernewfam 34
innernewhelp i 34
innernewif 34
innernewinsertiiiiiiiia 34
innernewlanguage................ ..., 34
innernewreadii i 34
innernewskip 34
InnernewtoksS 34
innernewwritei.ii 34
insidemargin..............., 19
interfootnoteskip.............. 24
interitemskip.......... Ll 10
interitemskipamount................, 10
item in indexes............iiiiii 20
itemletter i 11
itemnumber 11

LAMSTeX . .o 25
LaTeX . ..o 25
lbracechar i 34
leftdisplayindent............ 9
leftdisplays .. .o.vviirii i 9
leftdisplaysetup.........covviuiinninninnenn.... 9
leftmargin ... 23
1eqalighno .. oottt e 9
letreturn 34
letter. ... oo 34
Lt 27
I 10
linenumberedlisting............................ 11
listcompact 10
Listing.ot 11
listingfont 11
listleftindent 10
listmarkerspace............c.coouiiiniiinainain. . 10
listrightindent......... 10

loggingall 5

53
M
makeactive i 34
makeblankbox il 26
MaKeCOLUMNSottt 22
makeheadline 19
makeindex il 16
MAPAOWIL . ..ottt e e et e e e e e e 27, 28
mapleft 27, 28
mapright L 27, 28
1 E= o 27, 28
matrix... 29
ME 25
monthname i, 9
morphdist Ll 28, 33
N
TIEW u v v e e et et et e e e e e 34
TLOATTOW . & e et ee e e et e e e e e e i 3
noauxfile i 4
nobibtex.......... 3
nocite. 6
numberedfootnote............. 24
numberedlist 9
numberedlistdepth........... 10
numberedmarker 10
numbernameuiuiiiiiininaiaaaa. 39
O
obeywhitespace........... 39
orderedlist i 9
other........ 34
OULET ..ot 34
outsidemargin............. L 19
P
PABENO . o\ttt et 19
pagetotal 23
paperheight, 23
paperwidth 23
parindent in indexes 19
Path. 25
percentchar 34
previouseverydisplay....................... ... 9
printbetweencitations................, 7
printcitefinish.......... 7
printcitenote 7
printcitestart............. 7
printitem 11

54

Q

qQUadColumMNSottt 23
R

raggedright for index entries..................... 20
rbracechar i, 34
readindexfilet 19
readtocfile 12
ref L 13
o < 6 + 13
ref s . 13
rewritetocfile (conditional) 12
rightmargin............ 23
o 72 27
S

sanitize 36
sarrowlength......... 28, 32
see for index entries 18
seealso for index entries......................... 18
SELPrOPerty .. .ot i 38
setuplistinghook............................... 11
SAAX .o 17
sidxmarkedt 17
S1AXNAMEottt 17
sidxsubmarked, 17
singlecolumnouiiiiiiniiaiain... 23
sline ... 28, 29
SLATeX . ot 25
specialpathdelimiters (conditional)............. 25
subegnumber 16
subiteminindexes.................... ..., 20
subsubitem inindexes 20
T

testfileexistence............. 39
T e 25
timestamp ...t 9
timestring 9
TOC...entrY ..ot 12
tocfilebasenameouvriirirennnnan.. 12

Expanded Plain TEX

today ... 9
topmargin 23
tracingall 5
tracingboxes 5
tracingoff 5
triplecolumns 23

U

uncatcodespecials........... ... L., 34
unorderedlist L. 9
unorderedlistdepth............................. 10
unorderedmarker 10

v

varrowlength.......... 28, 32
vchannel 33
verbatim 11
verbatimescapechar............................. 11
VETid ..o 31, 33
viine...... ... 28
VIOTPAPOSIL . . oo ov e e 28, 33
vmorphposndn................ 28, 33
vmorphposnlft.............. 28, 33
VIOXPhpOSnTtot 28, 33
VIOTPRPOSIUP - - ¢ v oeve oo e e ie e 28, 33
Vpenalty ... 39
vruledefaultwidth............................... 5

W

writenumberedtocentry 12
writetocentry, 12

X

Xeplain.tex 1
xrdef 14
xref ... 14
xrefn. 13
xrefwarning conditional 13
xrefwarningfalse................ 6
xrlabel. 36

Concept index

Concept index

A

active characters............., 34
after index terms 20
alignments 22
allocation macros........... 34
alphanumeric references 7
AMSLaTEX .« . oot 25
AMSTEX . e 25
AMSTEX conflicts ... 4
arguments, ignoring.............. 35
ATTOWS .« ot te e e e e e e e e e e e 27
atom 38
axuiliary files, existence of 39

B

backslash character 34
balancing of columns with \singlecolumn......... 23
Berry, Karl......... 1
bibliographies 5
bibliography fonts 8
bibliography items, extra space between 8
bibliography, formatting the 8
BibTEX . .o 5, 25
black boxes 25
Borceux, Francis.......... o L 31
Bott, Raoul 29
bOXES, OPEN . oot 25
Brockett, Roger W. o .. 30
Butterfly Lemma 32

C

category Codes. ...t 34
centering. ... 21
characters, converting to 36
citations 5
citations, formatting 7
citations, undefined 6
column balancing with \singlecolumn 23
column eject 23
commas after index terms 20
commutative diagrams 27
contents 12
continued index entries................ 20
covering homotopy property 29
cross-references......... 13
cross-references, defining general 13
cross-referencing index entries 18
cube. ... 31

customizing indexing............. 20

55
D
date ... 9
defining general references........................ 13
definitions, global 34
diagnostics 5
Diagram, macros for LaTeX 31
displays, left-justifying 8
double column output............................ 23
double columns in indexes........................ 19
E
eject in multicolumns o o oL 23
electronic mail addresses, breaking 25
empty labels 14
emtex, installation under 2
environments, user-defined 40
Eplain, installing 2
Eplain, invoking 3
Eplain, purpose of 1
equation labels, characters valid in................ 15
equation numbers, formatting of 15
equations, giving numbers to all 14
equations, groups of 15
equations, numbering 14
equations, references to 14
EITOT MESSAZES « « « v v e e et et ettt e 5
escape character, changing verbatim............... 11
expansion, one-level 38
F
filenames, breaking, 25
files, verbatim listing of 11
footnotes, numbered 24
for loops ..o 35
format file.......... ... 2
formatting index entries.......................... 20
fractions 25
freedom, programming 47
ftp of Makelndex 16
G
gobbling arguments.......... o L 35
golden mean............. 30
Graham, Ronald L. 7
grid ... 31

56

H

help messages 5
hooks. 37

I

ignoring arguments o 35
index entries and ranges................... 18
index entries’ page numbers, modifying............ 18
index entries, and cross-referencing................ 18
index entry continuations......................... 20
index entry formatting 20
index entry general sorting 17
index fonts........ ... i i 19
index groupingsveiiineiiinneinn . 20
index terms, proofing 19
index typesetting 19
indexes, multiple............ 16
INdexXingt 16
indexing and trailing spaces 17
indexing commands 17
indexing termsi i 17
insertion classeso oL 24
installation....... o 2
interface copyright 48
item labels, changing............................. 11
iteration 35

J

justification 21

K

Knuth, Donald Ervin.......................... 7,34

L

labels on items, changing......................... 11
labels, characters valid in......................... 13
labels, empty 14
Lamport, Leslie............ 1
LAMSTEX .o 25
Lang, Serge...... ... 29, 32
LaTeX . oo 1, 5, 25, 27
left-justification. 21
left-justification of displays 8
linear systems theory 30
nes ..o 27
list of figures ... 12
listof tables. oo 12

listing files ... 11

Expanded Plain TEX

LSt e 9
lists, formatting L. 10
lOgOS . . o oo 25
lookahead without spaces......................... 39

M

margins, changing 22
margins, index terms in.......................... 19
mathematics displays, formatting 8
Metafont. ... 25
minimal realizations 30
modifying index entries’ page numbers 18
MOTPhiSIS . . .o et 27
multiple column output 23
multiple indexes 16

N

names, of TEX variants........................ ... 25
newlinechar 5
newlines, obeying 39
numbered lists......... 9
numbered references 7
numbers, written formof 39

@)

OPEN DOXES . ..ottt 25
ordered list.......... 9
output routine and index proofing................. 19

P

Patashnik, Oren 5
patents, software 47
pathnames, breaking............................. 25
proofing index terms 19
properties....... i 38

Q

quadruple column output......................... 23

Concept index

R

ranges and index entry 18
rectangles 25
references, alphanumeric 7
references, defining general 13
references, numbered 7
register allocation.......... oo L 34
return character 34
right-justification o o 21
910 1= 1, 48
rule thickness. 5

S

see also index entries and sorting.................. 21
see, and index entries, 18
silent indexing.......... 17
skipping tokens......... 38
SLITEX .« o 25
Snake Lemma 29
software patents 47
sorting an index L 16
sorting of index entries........................... 17
space above index entries......................... 20
spaces, ignoring.............. ... il 39
spaces, obeying i 39
spaces, trailing and indexing commands 17
Stallman, Richard 1
subequations, referring to 15
subterm in indexing.................... 17

T

table of contents............ 12

57
table of contents, short........................ ... 35
tables. ... 22
tabs .. 39
Texinfo 1
time of day..........ooo i 9
tracing. 5
trailing spaces and indexing commands............ 17
triple column output 23
Tu, Loring W. 29
typesetting an index 19
U
undefined control sequence, checking for........... 38
undefined labels, warnings about................... 2
universal mapping property....................... 30
unordered lists........... i 9
user interface copyright 48
\V
VECEOTS . oot 27
verbatim listing............. L. 11
version number L 1
%%
Warner, Frank W. 30
whatsits made by index entries 18
whitespace 39

Z

Zassenhaus, Hans.............. 32

58

Expanded Plain TEX

Table of Contents

1 Introduction iiiiiinn... 1
2 Installation.............. ..., 2
3 Invoking Eplain 3
4 User definitions................ ..., 5
4.1 DiagnostiCsot 5

4.2 Rules. 5

4.3 Citationsot 5

4.3.1 Formatting citations L 7

4.3.2 Formatting bibliographies 8

A4 DISPIaYS o vt 8

4.4.1 Formatting displays.............c. i 9

4.5 Timeof day ... 9

4.6 LAStS oot 9

4.6.1 Formatting lists 10

4.7 Verbatim listing....... 11

4.8 Contents 12

4.9 Cross-references 13

4.9.1 Defining generic references 13

4.9.2 Using generic references.............. 13

4.10 Page references 14

4.10.1 Equation references................c.ooiiiiiiii... 14

4.10.1.1 Formatting equation references............... 15

4.10.1.2 Subequation references 15

411 Indexing.t 16

4.11.1 Indexing termscouieine i, 17

4.11.1.1 Indexing commands......................... 17

4.11.1.2 Modifying index entries...................... 18

4.11.1.3 Proofing index terms........................ 19

4.11.2 Typesetting anindex oo, 19

4.11.3 Customizing indexingooieiiiiian... 20

4.12 Justification 21

413 Tables. ... 22

414 MArgins . ..ottt 22

4.15 Multiple columns. 23

4.16 Footnotes......... ... 24

417 Fractions 25

4.18 Paths ... 25

419 LOZOS . .o v et 25

4.20

ii Expanded Plain TEX

5 Arrow theoretic diagrams 27
5.1 Slanted lines and vectors. i 27
5.2 Commutative diagrams i 27

5.2.1 Arrows and morphisms............. ..., 27
5.2.2 Construction of commutative diagrams................. 29
5.2.3 Commutative diagram parameters 32

6 Programming definitions....................... 34
6.1 Category codes.o 34
6.2 Allocation MACTOSttt ettt e 34
6.3 Tteration.......... ... i 35
6.4 Macro arguments. e 35
6.5 Converting to characters.............. 36
6.6 EXPansioniiiii 36

6.6.1 N\csnand \ece 37
6.6.2 \edefappend............ i 37
6.6.3 Hooks 37
6.6.4 Properties...........c. 38
6.6.5 \exXpandonCeouuiiiiiiiieai. 38
6.6.6 \ifundefined............ ... oot 38
6.6.7 \futurenonspacelet 39
6.7 ODbeYINg SPACES . . ot vttt ettt e 39
6.8 Writing out numbers 39
6.9 Mode-specific penalties 39
6.10 Auxiliary files......... 39
6.11 User-defined environmentscouiiiiineein... 40

Appendix A GNU GENERAL PUBLIC LICENSE

... 41
Preamble.o 41
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION . . .o 41
Appendix: How to Apply These Terms to Your New Programs 46

Appendix B Regain your programming freedom... 47

B.1 Software patents.......... 47
B.2 User interface copyright i 48
B.3 What to do?o 49
Macro INdeX ... ovv ittt iinei et eteeeeeeeneeneennnns 51

Conceptindexcovviiiiiiiiiiininnnnnnnnns 55

	Introduction
	Installation
	Invoking Eplain
	User definitions
	Diagnostics
	Rules
	Citations
	Formatting citations
	Formatting bibliographies

	Displays
	Formatting displays

	Time of day
	Lists
	Formatting lists

	Verbatim listing
	Contents
	Cross-references
	Defining generic references
	Using generic references

	Page references
	Equation references
	Formatting equation references
	Subequation references

	Indexing
	Indexing terms
	Indexing commands
	Modifying index entries
	Proofing index terms

	Typesetting an index
	Customizing indexing

	Justification
	Tables
	Margins
	Multiple columns
	Footnotes
	Fractions
	Paths
	Logos
	Boxes

	Arrow theoretic diagrams
	Slanted lines and vectors
	Commutative diagrams
	Arrows and morphisms
	Construction of commutative diagrams
	Commutative diagram parameters

	Programming definitions
	Category codes
	Allocation macros
	Iteration
	Macro arguments
	Converting to characters
	Expansion
	{@rawbackslashxx }csn and {@rawbackslashxx }ece
	{@rawbackslashxx }edefappend
	Hooks
	Properties
	{@rawbackslashxx }expandonce
	{@rawbackslashxx }ifundefined
	{@rawbackslashxx }futurenonspacelet

	Obeying spaces
	Writing out numbers
	Mode-specific penalties
	Auxiliary files
	User-defined environments

	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	Appendix: How to Apply These Terms to Your New Programs
	Regain your programming freedom
	Software patents
	User interface copyright
	What to do?
	Macro index
	Concept index

