
fontinst

Font installation software for TEX

tfm

afm

pl vplfd

vf pfa pfbtex

dvi

ps

fontinst

pltotf vptovf

latex

dvips

Alan Jeffrey and Rowland McDonnell
fontinst v1.8 · 30 June 1998

Alan Jeffrey and Rowland McDonnell fontinst: Font installation software for TEX 2

Contents

1 Introduction 3
1.1 What does fontinst do? . 4
1.2 Installation . 4
1.3 Why do we need fontinst? . 5
1.4 How do you use fontinst? . 7

2 Installing your own font family 10

3 Defining terms 14
3.1 What’s a font? . 14
3.2 What does fontinst do? . 17
3.3 What do you do with fontinst? 18

4 Customization 18
4.1 General commands . 19
4.2 Integer expressions . 20

5 Fontinst files 21
5.1 Install commands . 24
5.2 The \latinfamily command . 25

6 Encoding files 30
6.1 Encoding commands . 30
6.2 Encoding variables . 30
6.3 Slot commands . 31

7 Metric files 32
7.1 Metric commands . 32
7.2 Metric variables . 34
7.3 Glyph commands . 35

8 Future work 37

This manual describes the fontinst software for converting fonts from Adobe Font Metric
format to forms readable by TEX. This manual should be distributed with the fontinst soft-
ware, which is available by anonymous FTP from ftp://ftp.tex.ac.uk/tex-archive/fonts/

utilities/fontinst, and on the various CD-ROMs containing material from the CTAN
archives. Please do not contact the author directly for copies.

If you would like to report a bug with fontinst, please mail fontinst@cogs.susx.ac.uk. The
mail will be sent to the fontinst mailing list. If you would like to be on the fontinst mailing
list, please mail fontinst-request@cogs.susx.ac.uk.

The fontinst package is copyright c© 1993–1996 Alan Jeffrey. The trig macro package

is copyright c© 1993–1998 David Carlisle. Unless indicated otherwise, the contents of the

contrib directory are copyrighted by the individual authors. All rights reserved. The moral

right of the authors has been asserted.

Alan Jeffrey and Rowland McDonnell fontinst: Font installation software for TEX 3

1 Introduction

The fontinst package is a set of TEX macros written to create virtual fonts for
use with TEX. Its main use is creating the files needed so you can use PostScript
Type 1 fonts with LATEX.

Fontinst needs information about the fonts it works with. This information
needs to be supplied in an Adobe Font Metric (afm) or TEX Property List (pl)
file. pl files can be created from tfm files using tftopl, a program normally
included with a TEX system.

The job that fontinst does is complicated, but it can be used for many tasks
by people who are not TEX font wizards. Having said that, you do need to
understand at least the basics of LATEX 2ε’s font selection mechanism, which is
documented in fntguide.tex, part of the standard LATEX distribution. ftp://
ftp.tex.ac.uk/tex-archive/macros/latex/base/fntguide.tex will fetch a
copy if you don’t have one to hand.

To get the most benefit out of fontinst, it’s important to understand and
use Karl Berry’s ‘Fontname’ naming scheme. The definitive version of this is
available from your nearest CTAN server. The following URL will fetch all
the files needed compressed into a single ZIP archive: ftp://ftp.tex.ac.uk/
tex-archive/info/fontname.zip. I suggest that you print out the Fontname
documentation and have it handy when you’re learning about fontinst.

The fontinst package:

• Is written in TEX, for maximum portability (at the cost of speed).

• Supports the OT1 (Computer Modern) and T1 (Cork) encodings.

• Allows fonts to be generated with arbitrary ‘fake’ characters; for example
the ‘ij’ character can be faked if necessary by putting an ‘i’ next to a ‘j’.

• Allows caps and small caps fonts with letter spacing and kerning.

• Allows kerning to be shared between characters, for example ‘ij’ can be
kerned on the left as if it were an ‘i’ and on the right as if it were a ‘j’. This
is useful, since many PostScript fonts only include kerning information for
characters without diacriticals.

• Allows the generation of math fonts with nextlarger, varchar, and ar-
bitrary font dimensions.

• Allows more than one PostScript font to contribute to a TEX font, for
example the ‘ffi’ ligatures for a font can be taken from the Expert encoding,
if you have it.

• Can automatically generate a fd file for use with LATEX 2ε.

• Can be customized by the user to deal with arbitrary font encodings.

Fontinst has been a stable piece of software since mid-1994. All further updates
will be upwardly compatible with the interface described in this document.

Alan Jeffrey and Rowland McDonnell fontinst: Font installation software for TEX 4

1.1 What does fontinst do?

Fontinst is a tool written in TEX that can create the various extra files needed
so you can use PostScript fonts with LATEX and TEX. It can read in afm files, and
produces the necessary vpl, pl, and fd files to use the fonts (the human-readable
vpl and pl files produced by fontinst are turned into the machine-readable
vf and tfm forms by vptovf and pltotf). It does not help you configure your
DVI driver.

There also exists a perl front-end to fontinst, intended specifically for use
with a Unix TEX system, which takes care of routine tasks such as running
vptovf and pltotf on the generated files after fontinst has finished it’s job.
It also generates a font map file for use with dvips.

Fontinst’s main job is creating vf files (virtual fonts). Not all TEX systems
can use them. As far as I know, all current (1998) free and shareware TEX
systems can; virtual fonts have been in widespread use with TEX since 1990.
If you have a TeX system that can’t use virtual fonts, fontinst is most likely
useless to you.

There are some nice things about having a tool written in TEX to do this: it’s
completely portable and you can modify its behaviour using TEX commands.
The only real problem is that it’s relatively slow: you can expect a typical
fontinst run to take something like 10–20 minutes on, say, a 40 MHz 80486SX
PC or a 25 MHz 68LC040 Macintosh.

Fontinst can do its work on any font for which you have a corresponding afm
or tfm metric file, so it’s not limited to working with PostScript fonts; I have
used it to produce the files I needed to use TrueType fonts with LATEX. Whether
or not you can do this depends on whether or not you have suitable metric files
and whether or not your TEX system can use TrueType fonts. In particular,
the pdfTEX program supports TrueType fonts and includes a utility ttf2afm
to generate afm files from ttf fonts.

Some people have used fontinst to produce ‘special effects’ with normal TEX
fonts. One example is the eco set of fonts (available from CTAN: ftp://
ftp.tex.ac.uk/tex-archive/fonts/eco/). These fonts are the same as the
standard EC (European Modern) fonts, but with normal numerals replaced with
old style numerals –  rather than 12345 – everywhere except in maths
mode.

1.2 Installation

To install fontinst, put the contents of the inputs/tex, inputs/etx, inputs/
mtx and examples directories into a directory read by TEX, for example TEXMF/
tex/generic/fontinst.

When you use fontinst, you need to make sure that the afm and pl files it
will work on are in a directory searched by TEX.

If you are using web2c TEX on a Unix system with the TEX directory structure
(TDS), you might put all the afm files in subdirectories of TEXMF/fonts/afm/*.
And then say:

Alan Jeffrey and Rowland McDonnell fontinst: Font installation software for TEX 5

setenv TEXINPUTS $TEXMF/fonts/afm//::

Note that pl files are not normally kept in TEX installations, so if you want to
use MF fonts with fontinst you have to generate the corresponding pl files
from tfm files and put them in your working directory before running fontinst.

You could adopt a similar strategy with other TEX systems: create directories
for the required files and then change the relevant parameter (input_folders
in the default configuration file with OzTEX, for example).

The approach I use is this: I write a file containing commands for fontinst
to process, and put the afm and pl files needed in the same directory as that
file. When fontinst has finished working, I delete the afm and pl files because
they are not needed and waste space on my hard disc drive. Some application
programs on some computers need afm files, so it’s not always a good idea to
remove them completely.

1.3 Why do we need fontinst?

TEX refers to characters by number when it’s typesetting. When you use a
command like \i, TEX puts a number (16 if you’re using OT1, 25 if you’re
using T1) into the dvi file. If you’re using a font designed for use with TEX,
this number will correspond to the character ‘ı’. Assuming OT1 encoding for
the moment, when you come to print out your dvi file, the DVI driver will
see the number 16 in the dvi file, and select the character that sits in position
16 of the corresponding printer font file (a pk file in the case of normal TEX
fonts). Unless something has gone wrong, that will result in the character ‘ı’
being placed on the page.

It’s useful to think of these numbers and the actual characters corresponding
to each number as sets called ‘encodings’. A particular set of characters are
assigned particular numbers. An example of an encoding is shown in table 1.

TEX began life using 7-bit fonts. This means the original TEX fonts used the
numbers 0–127 to represent characters: 128 characters per font. TEX can now
use 8-bit fonts: 256 numbers from 0–255, but even so, most typesetting with TEX
still uses the original 7-bit encoding, now called ‘OT1’ (Old TEX 1 encoding).
This has a correspondance between numbers and characters shown in table 1.
The numbers used in that table are hexadecimal and octal because it makes for
a neat table and anyway I stole the code to generate it from Donald Knuth and
that’s how he did it.

Returning to the example above, if you’ve a number 16 in your dvi file (ex-
pecting ‘ı’, a dotless i), but rather than printing with an OT1 encoded font,
you print using a non re-encoded PostScript font in Adobe standard encoding,
you’ll get a blank, because the Adobe standard encoding has nothing in that
character position.

There are several ways round this problem; I’ll consider two cases here. If
you are using LATEX you can tell it about a new encoding and re-define the
commands that produce characters like ‘ı’ that live in different positions in

Alan Jeffrey and Rowland McDonnell fontinst: Font installation software for TEX 6

0́ 1́ 2́ 3́ 4́ 5́ 6́ 7́

0́0x Γ ∆ Θ Λ Ξ Π Σ Υ
˝0x

0́1x Φ Ψ Ω ff fi fl ffi ffl
0́2x ı  ` ´ ˇ ˘ ¯ ˚

˝1x
0́3x ¸ ß æ œ ø Æ Œ Ø
0́4x ! ” # $ % & ’

˝2x
0́5x () * + , - . /
0́6x 0 1 2 3 4 5 6 7

˝3x
0́7x 8 9 : ; ¡ = ¿ ?
1́0x @ A B C D E F G

˝4x
1́1x H I J K L M N O
1́2x P Q R S T U V W

˝5x
1́3x X Y Z [“] ˆ ˙
1́4x ‘ a b c d e f g

˝6x
1́5x h i j k l m n o
1́6x p q r s t u v w

˝7x
1́7x x y z – — ˝ ˜ ¨

˝8 ˝9 ˝A ˝B ˝C ˝D ˝E ˝F

Table 1: The OT1 font encoding

different encodings, or you can use a tool to re-encode the font so that it has
the expected characters in the appropriate positions.

Re-encoding is the approach fontinst uses: it can produce files to map the
characters in the new font to one of TEX’s existing encodings; this works with
formats other than LATEX.

The first approach is used to define the standard encodings that LATEX uses. See,
for example, the file ot1enc.def that comes with the current LATEX distribution,
which defines the a few commands that refer to characters which aren’t in the
positions TEX would otherwise assume. This works only with modern versions
of LATEX.

The second approach is used to allow you to use fonts in other encodings with
any dialect of TEX. It has the some advantages over the first method: it works
with any TEX format; and it improves portability, because you can typeset a
document using a standard TEX encoding, sure that the same document will
print correctly on a different kind of computer using a font with a different
encoding. For example, you might say:

\usepackage{times}

in the preamble of your document. On my computer, that means my DVI driver
will use a Macintosh encoded TrueType version of Times. On your computer,

Alan Jeffrey and Rowland McDonnell fontinst: Font installation software for TEX 7

it might mean the dvi driver will use a Unicode encoded PostScript version of
Times-Roman. The results will be identical in either case, without needing to
modify the document.

1.4 How do you use fontinst?

Fontinst works on afm files named (more-or-less) according to Karl Berry’s
font naming scheme (see ftp://ftp.tex.ac.uk/tex-archive/info/fontname
at CTAN). Let’s say you want to use the Adobe Times fonts. You can get the
metric files for this font from CTAN:

Location of file at CTAN Rename to
fonts/psfonts/adobeafm/base35/tib_____.afm ptmb8a.afm

fonts/psfonts/adobeafm/base35/tibi____.afm ptmbi8a.afm

fonts/psfonts/adobeafm/base35/tii_____.afm ptmri8a.afm

fonts/psfonts/adobeafm/base35/tir_____.afm ptmr8a.afm

The new name is the name you should give the tfm files so that fontinst un-
derstands what each file contains. The initial ‘p’ means ‘Adobe’; ‘tm’ means
‘Times’; ‘b’ bold, ‘r’ roman, ‘i’ italic; and ‘8a’ means ‘Adobe standard encod-
ing’.

The simplest use of fontinst is to put the four afm files in the same directory
as fontinst.sty and run TEX on fontinst.sty. At the * prompt type:

*\latinfamily{ptm}{} \bye

Some time later (about 17 minutes on my rather old computer), fontinst will
have finished, having created:

• Two pl files for each afm file

• One vpl file for each TEX font

• One fd file for each family

The pl files come in pairs: for example, ptmb8a.pl and ptmb8r.pl. The 8a
version has the same encoding as the original font; the 8r version is re-encoded
to TeXBase1 (8r) encoding, and is the font that is the base on which the T1
and OT1 encoded versions are based on. The raw 8a (Adobe standard) encoded
font is not normally used.

These can be converted to TEX fonts using pltotf or vptovf. If you have
OzTEX, launch OzMF, select pltotf (or vptovf) from the Tools menu, and
say ‘Do all files’.

If you use the bash shell on a Unix system, you can process all files using these
one-liners at the $ prompt:

$ for f in in *.pl; do pltotf $f; done

$ for f in in *.vpl; do vptovf $f; done

Alan Jeffrey and Rowland McDonnell fontinst: Font installation software for TEX 8

(This assumes that pltotf and vptovf can deduce the file names of the cor-
responding tfm and vf files automatically.)

You should then:

• Move the tfm files to your TEX fonts directory
(e.g. TEXMFLOCAL/fonts/tfm/*).

• Move the vf files to your virtual fonts directory
(e.g. TEXMFLOCAL/fonts/vf/*).

• Move the fd files to your TEX inputs directory
(e.g. TEXMFLOCAL/tex/latex/psfonts/*).

If your TEX installation is organized using the TEX directory structure (TDS),
it is customary to subdivide the tfm and vf files into subdirectories by supplier
and typeface name.

The pl, vpl, and mtx files are debris that can now be deleted. mtx files are font
metric files fontinst creates for its own use from afm and pl files. They’re just
more convenient for TEX to read than other forms – think of them as fontinst
readable afm and pl files.

By now, you have all the files in place to produce a dvi file using the new fonts.
You can make Adobe Times the default roman font in your document by putting
this in your preamble:

\renewcommand{\rmdefault}{ptm}

TEX will now happily produce a perfectly good dvi file including the new font,
which your DVI driver will choke on because you’ve not yet told it about the
new fonts. Exactly how you do this depends on the dvi driver, but they all
need the same information: the name of a TEX font; the printer font name it
corresponds to; some information to handle an re-encoding needed; and (in the
case of a PostScript driver) perhaps an instruction to download the font to the
printer. You don’t need to download the Times font to a PostScript printer,
because Times is built in to every PostScript printer.

If you use dvips, these lines added to your psfonts.map file will do the job:

ptmr8r Times-Roman "TeXBase1Encoding ReEncodeFont" <8r.enc

ptmri8r Times-Italic "TeXBase1Encoding ReEncodeFont" <8r.enc

ptmb8r Times-Bold "TeXBase1Encoding ReEncodeFont" <8r.enc

ptmbi8r Times-BoldItalic "TeXBase1Encoding ReEncodeFont" <8r.enc

ptmro8r Times-Roman "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc

ptmbo8r Times-Bold "0.167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc

And now you can print a dvi file containing the new fonts. If you really do
want to use the ‘raw’ 8a encoded fonts for some reason, you need to add these
lines to your psfonts.map file:

ptmr8a Times-Roman

ptmri8a Times-Italic

Alan Jeffrey and Rowland McDonnell fontinst: Font installation software for TEX 9

ptmb8a Times-Bold

ptmbi8a Times-BoldItalic

ptmro8a Times-Roman "0.167 SlantFont"

ptmbo8a Times-Bold "0.167 SlantFont"

Assuming that you’re using the fd file that fontinst has produced, and that
you’ve asked for the Adobe Times family (ptm) in medium series (m) and upright
shape (n for normal) using the NFSS font selection commands:

\renewcommand{\rmdefault}{ptm}

\rmfamily \mdseries \upshape

Assuming further that you are using the fd file t1ptm.fd produced by font-
inst, the TEX font (tfm file) ptmr8t.tfm will be selected by the above com-
mands, as you can see from the relevant line in t1ptm.fd:

\DeclareFontShape{T1}{ptm}{m}{n}{<-> ptmr8t}{}

This is what happens:

• TEX typesets your document using the font metric file ptmr8t.tfm; this
is the font that is put in the dvi file.

• Dvips looks at the dvi file, and sees a reference to the font ptmr8t.

• Dvips searches for a vf file corresponding to ptmr8t; when it finds
ptmr8t.vf, it knows it has a virtual font on its hands.

• Dvips follows the instructions in the vf file, which map characters in
ptmr8t.tfm to characters in the font ptmr8r.tfm. That is, when it sees
a number 25 in the dvi file (dotless i – ‘ı’ – in T1 encoding), it replaces it
with a number 17, which is a dotless i in 8r encoding.

• Then dvips looks up the name of each number according to the scheme
given in the file 8r.enc, and replaces each number with the name of the
character, in this case, number 17 is listed as ‘dotlessi’.

• And finally, dvips tells the printer to print the named character.

Not all DVI drivers can manage re-encoding as well as dvips can. For example,
OzTEX’s built-in non-PostScript dvi driver can only work with numbers, so if
I’m using a PostScript font, I can’t print characters (such as Eth) that don’t
have a number in Macintosh text encoding unless I use dvips and print on a
PostScript printer. Dvips works with character names, so it’s not subject to
this restriction. In the example above, OzTEX would replace the number 17
for ‘dotlessi’ in 8r encoding with a number 245 for ‘dotlessi’ in Macintosh text
encoding.

The details of the LATEX 2ε font selection scheme are described in LATEX2ε font
selection (distributed with LATEX 2ε as the file fntguide.tex) and The LATEX
Companion (Goossens, Mittelbach and Samarin, Addison-Wesley).

The files you need to use Times, Helvetica, Courier, and the rest of the ‘standard’
PostScript fonts are distributed as part of the PSNFSS bundle available from
CTAN, so there’s no need to create new files to use these fonts.

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 10

A more involved example of fontinst use can be seen in the file fontptcm.tex
which creates the files you need to use a combination of Times, Symbol, Zapf
Chancery and Computer Modern as TEX math fonts.

2 Installing your own font family

The fontinst package has a command \latinfamily meant to do most of
the work to install a ‘normal’ set (family) of roman text fonts from Adobe.
Assuming you have a set of afm files to match the fonts you wish to use, the
first step is to rename the afm files according to the Fontname naming scheme.

A ‘normal’ set of text fonts usually includes the basic upright roman version,
bold, italic, and bold italic. Sometimes there will also be small caps ver-
sions, perhaps some ‘expert’ fonts, and maybe some other weights such as light,
medium, semi bold, black or ultra bold.

The most important point to note is this: no matter what sort of computer
you’re using and no matter what font encoding it uses normally, afm files for
text fonts are almost always in 8a encoding (Adobe standard encoding), so the
afm files when renamed normally end in 8a.

A typical set of four afm files re-named for use with fontinst is this:

ptmr8r.afm Times-Roman

ptmri8r.afm Times-Italic

ptmb8r.afm Times-Bold

ptmbi8r.afm Times-BoldItalic

Not all afm files use 8a encoding. If you open an afm file using a text editor,
you’ll see a line looking like this somewhere near the top:

EncodingScheme AdobeStandardEncoding

and if you see exactly that, the afm file should end with 8a. If you see something
like this:

EncodingScheme FontSpecific

have a look at the name of the font in the afm file. If you see something like
this:

FontName AGaramondExp-Regular

FullName Adobe Garamond Regular Expert

you have an ‘expert’ encoded font on your hands, and the afm file should end
with 8x to indicate this to fontinst. An 8x encoded font contains extra glyphs
like old style numerals, small capital letters, more ligatures, and so on.

The \latinfamily command is used like this:

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 11

\latinfamily{〈family〉}{〈commands〉}

This installs a Latin family of fonts.

For example, to install Adobe Times, you say:

\latinfamily{ptm}{}

The commands issued by LATEX each time a font from that family is loaded.
This is most often used with typewriter fonts, to switch off hyphenation. For
example, Adobe Courier can be installed with:

\latinfamily{pcr}{\hyphenchar\font=-1}

Once the installation is over (which may take some time) the fonts can be used
in LATEX by selecting an appropriate \fontfamily, for example Adobe Times
can be selected with:

\fontfamily{ptm}\selectfont

If the fourth letter of the family name is ‘x’ then fontinst will use expert fonts
in creating the fonts. If the fourth letter is ‘j’ (or for backward compatibility
‘9’) then fontinst will use expert fonts to create fonts with old style digits.

For example, to install Adobe Garamond using expert fonts, you say:

\latinfamily{padx}{}

To install Adobe Garamond using expert fonts with oldstyle digits, you say:

\latinfamily{padj}{}

When you have expert fonts, and you’ve told fontinst to use them, it will
carry on as normal, but the resulting font family will have the name ‘padx’ or
‘padj’, and it will use expert glyphs whenever possible, so you’ll have a real
(rather than faked) small caps font, real (rather than faked) ‘ffl’ ligatures, and
so on.

Before using these commands, you will need to make sure that you have the
Adobe Font Metric (afm) files for the fonts, and that they have appropriate
names. The fontinst package uses the LATEX convention for naming fonts, and
uses a font family name which consists of:

• a supplier (or foundry), such as ‘p’ for Adobe.

• a typeface, such as ‘ad’ for Adobe Garamond.

• up to two variants, such as ‘j’ or ‘x’ for ‘old style digits’ or ‘expert’.

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 12

b Bitstream
f ‘free’ (public domain)
h Bigelow & Holmes
i ITC
l Linotype
m Monotype
p Adobe (p for PostScript)
r ‘raw’ (obsolete)
u URW
z bizarre

Table 2: A partial list of foundries

a alternate
d display, titling
f fraktur, handtooled
j oldstyle digits
n informal, casual
p ornaments
s sans serif
t typewriter
w script, handwriting, swash
x expert

Table 3: A partial list of variants

c small caps
i italic
o oblique (i.e., slanted)
u unslanted italic

Table 4: A partial list of shapes

ac Adobe Caslon
ad Adobe Garamond
ag Avantgarde
bb Bembo
bd Bodoni
bk Bookman
bv Baskerville
ca Caslon
ch Charter
cr Courier
fr Frutiger
fu Futura
gl Galliard
gm Garamond
gs Gill Sans
hv Helvetica
mn Minion
lc Lucida
lh Lucida Bright
ls Lucida Sans
nb New Baskerville
nc New Century Schoolbook
op Optima
pl Palatino
sy Symbol
tm Times
ut Utopia
zc Zapf Chancery
zd Zapf Dingbats

Table 5: A partial list of faces

So the family name ‘padj’ indicates Adobe Garamond with old style digits.
Note that the variants ‘j’ or ‘x’ are interpreted by fontinst itself and do not
appear in external font names, whereas other variants are passed through as
part of the font names. (This is needed for families which have a sans serif or
typewriter variant.)

The supplier must be one letter, and the typeface must be two (this is an
attempt to fit all filenames into MS-DOS format). Each variant is one letter.
The full list of foundries, typefaces, shapes and variants is given in Karl Berry’s
‘Filenames for fonts’ (available by anonymous FTP from ftp://ftp.tex.ac.
uk/tex-archive/info/fontname), but the more common ones are given in
Tables 2–5.

The fontinst package uses Karl Berry’s naming scheme for afm files. The full
naming scheme is rather more flexible than the subset used by fontinst, which
uses filenames consisting of:

• a supplier, such as ‘p’ for Adobe.

• a typeface, such as ‘hv’ for Helvetica.

• a weight, such as ‘r’ for regular.

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 13

b bold
c black
d demibold
h heavy
k book
l light
m medium
r regular
s semibold
u ultra bold
x extra bold

Table 6: A partial list of weights

c condensed
n narrow
w wide
x extended

Table 7: A partial list of widths

8a Adobe Standard
8x Adobe Expert
8r TEX 8-bit ‘raw’ (TeXBase1)
8y TEX 8-bit ‘raw’ (TeXnANSI)
7t TEX 7-bit text (OT1)
7m TEX 7-bit math italic (OML)
7y TEX 7-bit math symbol (OMS)
7v TEX 7-bit math extension (OMX)
8t TEX 8-bit text (T1)
8c TEX 8-bit text symbols (TS1)
9t TEX 7-bit text with expert glyphs
9o TEX 7-bit text with expert glyphs

and old-style digits
9e TEX 8-bit text with expert glyphs
9d TEX 8-bit text with expert glyphs

and old-style digits
9c TEX 8-bit symbols with expert glyphs

and old-style digits

Table 8: A partial list of encodings

• up to two shapes or variants, such as ‘o’ for oblique.

• an encoding, such as ‘7t’ for Knuth’s 7-bit TEX encoding.

• an optional width, such as ‘n’ for narrow.

• a file extension, such as ‘.tfm’ for TEX Font Metric.

So the filename name ‘phvro7tn.tfm’ indicates Adobe Helvetica regular oblique
narrow, in the 7-bit TEX encoding.

The full list of shapes, encodings and weights is given in Karl Berry’s ‘Filenames
for fonts ’, but the more common ones are given in Tables 4–6.

For example, to install Adobe Garamond including the expert fonts, you would
need to rename the afm files:

Adobe name ATM name Fontinst name
AGaramond-Bold.afm gdb_____.afm padb8a.afm

AGaramond-BoldItalic.afm gdbi____.afm padbi8a.afm

AGaramond-Italic.afm gdi_____.afm padri8a.afm

AGaramond-Regular.afm gdrg____.afm padr8a.afm

AGaramond-Semibold.afm gdsb____.afm pads8a.afm

AGaramond-SemiboldItalic.afm gdsbi___.afm padsi8a.afm

AGaramondExp-Bold.afm geb_____.afm padb8x.afm

AGaramondExp-BoldItalic.afm gebi____.afm padbi8x.afm

AGaramondExp-Italic.afm gei_____.afm padri8x.afm

AGaramondExp-Regular.afm gerg____.afm padr8x.afm

AGaramondExp-Semibold.afm gesb____.afm pads8x.afm

AGaramondExp-SemiboldItalic.afm gesbi___.afm padsi8x.afm

AGaramond-RegularSC.afm gdsc____.afm padrc8a.afm

AGaramond-SemiboldSC.afm gdsbs___.afm padsc8a.afm

You can then run TEX on the following document to install the Adobe Garamond
family:

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 14

\input fontinst.sty

\latinfamily{padx}{}

\latinfamily{padj}{}

\bye

Not all font families can be installed using the \latinfamily command, so the
rest of this document describes the full fontinst syntax, and is intended for
‘power users’.

3 Defining terms

This is rather a large and perhaps tedious section. You might be tempted to
skip it so you can get to some more direct information on how to use fontinst.
That’s fine if you understand everything about how TEX handles fonts. If not,
I suggest you at least skim though this section.

3.1 What’s a font?

Once upon a time, this question was easily answered: a font is a set of type
in one size, style, etc. There used to be no ambiguity, because a font was a
collection of chunks of type metal kept in a drawer, one drawer for each font.

These days, with digital typesetting, things are more complicated. What a font
‘is’ isn’t easy to pin down. A typical use of a PostScript font with TEX might
use these elements:

• Type 1 printer font file

• Bitmap screen font file

• Adobe font metric file (afm file)

• TEX font metric file (tfm file)

• Virtual font file (vf file)

• font definition file (fd file)

Looked at from a particular point of view, each of these files ‘is’ the font. So
what’s going on?

3.1.1 Type 1 printer font files

These files contain the information needed by your printer to draw the shapes of
all the characters in a font. They’re typically files with a pfa or pfb extension;
on Macs they’re usually in files of type ‘LWFN’ which usually have icons that
look like a laser printer. The information in all these files is basically the same:
the only difference is in its representation. pfa stands for ‘printer font ASCII’,
while pfb stands for ‘printer font binary’. That is, pfa files contain plain text
information, while pfb files contain the same information encoded as machine-
readable binary data.

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 15

If you have Adobe Type Manager (ATM) installed on your computer, ATM will
use these files to draw an accurate representation of the letters on the screen of
your computer when you are previewing a TEX document.

Printer font files are not used directly by TEX at all – TEX just prepares a dvi
file that refers to the fonts by name and the characters by number: TEX knows
nothing about the shapes involved. The DVI driver uses the printer font files
when you ask it to print the dvi file. This means that you can produce a dvi
file which uses, say, Palatino, even if you do not have the Type 1 printer font
file for this font on your computer. You will need to find a computer that does
have Palatino before you can print it or preview it, though.

(This isn’t exactly true for the recently developped pdfTEX program, which
integrates some of the functionality of a DVI driver.)

3.1.2 Bitmap screen font files

These files contain a low-resolution bitmap for drawing a representation of the
font on the screen of your computer if ATM is not installed. In the TEX world,
these files are only used for screen previews by the DVI driver. They are kept
in font suitcase files on Macintoshes.

3.1.3 Adobe font metric files (afm files)

These files are text files which contain information about the size of each char-
acter in a font, kerning and ligature information, and so on. They can’t be used
by TEX directly, but the information they contain is essential if you want to use
a font with TEX. Fontinst can create from an afm file the necessary tfm and
vf files so you can use a font with TEX. Once you have created all the files you
need to use a font with TEX, you can remove the corresponding afm files from
your computer unless you have other software that needs them.

The job of turning an afm file into a set of tfm and vf files is one of the main
uses for fontinst. Most of this document is concerned with this process, so
don’t worry if it seems a bit vague at the moment.

3.1.4 TEX font metric files (tfm files)

These are binary data files in a format designed for use by TEX which contain
(more-or-less) the same information as afm files: the size of each character in a
font (font metric data), kerning, and ligature information.

When you select a font in TEX, you are telling TEX to typeset using a particular
tfm file; from TEX’s point of view, a tfm file (and nothing else) is a font. TEX
itself doesn’t see printer font files, screen bitmaps, pk files, vf files, or anything
else to do with fonts: only tfm files.

TEX uses these tfm files to decide where to put characters when typesetting.
From TEX’s point of view, tfm files are fonts, even though they contain no
information about the shape of letters, and are not used by anything except

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 16

TEX – once you have produced a dvi file, you don’t need the tfm files to print
it out. (This is a slight lie: dvips can read tfm files corresponding to Post-
Script and TrueType fonts so it can modify the metrics slightly to improve the
letterspacing at your chosen output resolution. This is an optional minor tweak
and not an essential part of the output process.)

3.1.5 Property list files (pl files)

pl files are human-readable text files which contain all the font metric, kerning,
ligature, and other information needed to create a tfm file. You can convert
between the two file formats using tftopl and pltotf.

3.1.6 Virtual font files (vf files)

These are binary data files in a format designed for use by TEX dvi drivers.
They’re main purpose in life is to let you use fonts in different encodings to the
standard TEX encodings. These files are used by dvi driver software only.

They are used only by dvi drivers to work out what it should really print when
you ask for a particular character. They are arcane creatures, but fontinst
deals with the details for you, and creating and using them is what this document
is about, so don’t worry if this doesn’t make sense yet. (I don’t understand the
details about the innards of vf files, but you’ll find out that that doesn’t matter
if you just want to use fontinst).

Each vf file has a tfm file with the same name. To use a virtual font, you select
the tfm file as the font to use in your document. When the dvi driver comes
across this tfm file in the dvi file, it looks up the vf file and uses that to decide
what to do.

3.1.7 Virtual property list files (vpl files)

vpl files are human-readable text files which contain all the font metric, kerning,
mapping, and other information needed to create a vf and tfm pair.

vptovf will create a vf/tfm pair from a vpl file. vftovp will create a vpl
from a vf/tfm pair. vftovp also needs to be able to read all the tfm files that
are referred to by a vf to recreate the vpl– it looks at the checksums to verify
that everything’s okay.

3.1.8 Font definition files (fd files)

These are files containing commands to tell LATEX which tfm files to associate
with a request for a font using LATEX’s font selection commands.

For example, here is a small and edited part of the fd file supplied with PSNFSS
to allow you to use the Adobe Times font in T1 encoding:

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 17

\ProvidesFile{t1ptm.fd}

[1997/02/11 Fontinst v1.6 font definitions for T1/ptm.]

\DeclareFontFamily{T1}{ptm}{}

\DeclareFontShape{T1}{ptm}{m}{n} {<-> ptmr8t}{}

\DeclareFontShape{T1}{ptm}{m}{it}{<-> ptmri8t}{}

...

\DeclareFontShape{T1}{ptm}{b}{n} {<-> ptmb8t}{}

\DeclareFontShape{T1}{ptm}{b}{it}{<-> ptmbi8t}{}

...

What this means is: when you use LATEX to select the font family ptm in T1
encoding in the medium series (m) and normal shape (n), TEX uses the font
ptmr8t.tfm. Similarly, if you select bold italic, TEX uses ptmbi8t.tfm.

LATEX works out which fd file to load based on the current encoding and font
family selected. If you’ve selected T1 encoded ptm like this:

\fontencoding{T1}\fontfamily{ptm}\selectfont

LATEX loads the file t1ptm.fd (if it doesn’t exist, you’re in trouble). As you
can see above, this file contains information so that LATEX knows which tfm file
to use. So if you ask for, say, T1/ptm/b/it (T1 encoded Times-Roman, bold
series, italic shape), you get the font ptmbi8t.

You can find more about fd files and LATEX’s font selection commands at CTAN:
ftp://ftp.tex.ac.uk/tex-archive/macros/latex/base/fntguide.tex and
ftp://ftp.tex.ac.uk/tex-archive/info/simple-nfss.tex are both useful.

3.2 What does fontinst do?

fontinst creates vpl and pl files from afm or pl files to map any glyph or
combination of glyphs in the original font files to any slot in the output font
file. There, isn’t that better? Off you go now. . .

If you’re still confused, I’ll explain a few things.

Glyph This is a jargon word referring to what most people think of as a char-
acter. But is an acute accent really a character? And what about an acute
accent over an ‘e’? You can refer to the letter ‘e’ as a glyph; the acute
accent ‘´’ as a glyph; and the accented letter ‘é’ as yet another glyph.

Encoding A particular arrangement of glyphs in a font used by a computer.
You’re probably familiar with ASCII encoding, which has the letter ‘A’
in slot 65, ‘B’ in slot 66, and so on. That’s it, really. TEX uses several
different encodings. The most common ones are OT1 (the original TEX
7 bit encoding) and T1 (the newer TEX 8 bit encoding).

The thing is that the average PostScript font comes in Adobe standard
encoding, which, for example, has the glyph dotless i ‘ı’ in slot 245. But
TEX T1 encoding expects the glyph o dieresis ‘ö’ in that slot, and wants

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 18

dotless i in slot 25. So if you tried to use a raw PostScript font with TEX,
any time you tried to get a ‘ö’, you’d get a ‘ı’; and every time you tried
to get a ‘ı’, you’d get a blank, because Adobe standard encoding says
that slot 25 is empty. The process of dealing with this problem is called
‘re-encoding’, and is what fontinst helps with.

Slot As mentioned above, this is a numbered position in an encoding. For
example, slot 33 in ASCII encoding contains the glyph ‘!’.

This might not make much sense yet; the best thing to do is relax. There’s a lot
of things that need to be dealt with when you’re setting up LATEX to use a new
font, so you can expect to be a bit confused until you’ve done it a few times.

3.3 What do you do with fontinst?

If you’re using fontinst, the usual steps you need to take to use an ordinary
PostScript text font with LATEX are these:

1. Give the afm files an approriate name.

2. Use fontinst to produce an 8r encoded pl files from these afm files.

3. Use fontinst to create T1 and OT1 encoded pl and vpl files from the
8r encoded pl filea (this procedure will also create suitable fd files).

4. Use pltotf to turn each pl file into a tfm file.

5. Use vptovf to turn each vpl file into a pair of vf and tfm files.

6. Move the tfm, vf, and fd files into the appropriate directories so LATEX
can see them.

7. Tell your DVI driver about the new font (edit dvips’s psfonts.map file,
or OzTEX’s Default configuration file.

8. Perhaps write a package file to make selecting the new font a little easier.

9. Test it.

4 Customization

The fontinst package reads a file fontinst.rc if it exists. This can contain
your own customizations.

You can create a fontinst format by running iniTEX on fontinst.sty then
saying \dump.

There are three types of files used by the fontinst package:

• fontinst files contain commands to process fonts metrics so you can use a
font with TEX. For example, fontptcm.tex is a fontinst file.

• encoding files contain information about an encoding, including the code
table, ligatures, and font dimensions. For example, 8r.etx is an encoding
file.

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 19

• metric files contain information about glyphs, including glyph dimensions,
composite characters, and kerning. For example, latin.mtx is a metric
file.

Any of these files can include the general commands, and can use the integer
expressions, defined in Section 4.2.

4.1 General commands

The following general commands can be used anywhere:

\needsfontinstversion{〈version〉}

This issues a warning if the current version of the fontinst package is less than
〈version〉.

\setdim{〈dim〉}{〈dimension〉}
\setint{〈int〉}{〈integer expression〉}
\setstr{〈str〉}{〈string〉}

If the dimension variable 〈dim〉 is currently undefined, it is defined to be the
current value of 〈dimension〉.
If the integer variable 〈int〉 is currently undefined, it is defined to be the current
value of 〈integer expression〉.
If the string variable 〈str〉 is currently undefined, it is defined to be the current
value of 〈string〉.

\setcommand{〈command〉}{〈definition〉}

If the command 〈command〉 is currently undefined, it is defined to be the
〈definition〉. This uses the same syntax for parameters as the TEX \def com-
mand.

\resetdim{〈dim〉}{〈dimension〉}
\resetint{〈int〉}{〈integer expression〉}
\resetstr{〈str〉}{〈string〉}

The dimension variable 〈dim〉 is defined to be the current value of 〈dimension〉.
The integer variable 〈int〉 is defined to be the current value of 〈integer expression〉.
The string variable 〈str〉 is defined to be the current value of 〈string〉.

\resetcommand{〈command〉}{〈definition〉}

The command 〈command〉 is defined to be the 〈definition〉, regardless of whether
it was already defined or not. This is a synonym for the TEX \def command.

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 20

\ifisint{〈int〉}\then
\ifisdim{〈dim〉}\then
\ifisstr{〈str〉}\then
\ifisglyph{〈glyph〉}\then
\ifiscommand{〈command〉}\then

Expands out to \iftrue if the integer variable 〈int〉 is defined, and \iffalse
otherwise.

Expands out to \iftrue if the dimension variable 〈dim〉 is defined, and
\iffalse otherwise.

Expands out to \iftrue if the string variable 〈str〉 is defined, and \iffalse
otherwise.

Expands out to \iftrue if the glyph variable 〈glyph〉 is defined, and \iffalse
otherwise.

Expands out to \iftrue if the command 〈command〉 is defined, and \iffalse
otherwise.

\unsetdim{〈dim〉}
\unsetint{〈int〉}
\unsetstr{〈str〉}
\unsetcommand{〈command〉}

Makes 〈dim〉, 〈int〉, 〈str〉, or 〈command〉 an undefined dimension, integer, string
or command.

4.2 Integer expressions

The integer expressions provide a user-friendly syntax for TEX arithmetic. They
are used to manipulate any integers, including glyph dimensions, which are given
in afm units, that is 1000 to the design size. TEX pl fonts have their dimensions
converted to afm units automatically.

The integer expressions are:

〈number〉

Returns the value of a TEX 〈number〉 (as explained ib The TEXbook).

\int{〈int〉}

Returns the value of the integer variable 〈int〉.

\width{〈glyph〉}
\height{〈glyph〉}
\depth{〈glyph〉}
\italic{〈glyph〉}

Returns the width, height, depth, or italic correction of the glyph variable
〈glyph〉.

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 21

\kerning{〈left〉}{〈right〉}

Returns the kerning between the 〈left〉 and 〈right〉 glyph variables.

\neg{〈integer expression〉}
\add{〈integer expression〉}{〈integer expression〉}
\sub{〈integer expression〉}{〈integer expression〉}
\mul{〈integer expression〉}{〈integer expression〉}
\div{〈integer expression〉}{〈integer expression〉}
\scale{〈integer expression〉}{〈integer expression〉}

\neg returns the negation of the 〈integer expression〉.
\ad returns the sum of the two 〈integer expression〉s.
\sub returns the first 〈integer expression〉 minus the second.

\mul returns the product of the two 〈integer expression〉s.
\div returns the first 〈integer expression〉 divided by the second.

\scale returns the first 〈integer expression〉 times the second, divided by 1000.

5 Fontinst files

A fontinst file is any TEX document which inputs the fontinst macros. The
commands available are:

\installfonts

〈install commands〉
\endinstallfonts

This makes a font family, using the 〈install commands〉. There can be any
number of \installfonts commands in a fontinst file.

\substitutesilent{〈to〉}{〈from〉} \substitutenoisy{〈to〉}{〈from〉}

This declares a LATEX font substitution, that the series or shape 〈to〉 should
be substituted if necessary by the series or shape 〈from〉. \substitutesilent
means that when the font substitution is made, no warning will given.

\substitutenoisy is the same as \substitutesilent, but gives a warning
when the substitution is made by LATEX.

For example, to say that the series bx can be replaced by the series b, you say:

\substitutesilent{bx}{b}

To say that the shaoe ui can be replaced by the shape i, you say:

\substitutenoisy{ui}{it}

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 22

The following weight substitutions are standard:

\substitutesilent{bx}{b}

\substitutesilent{b}{bx}

\substitutesilent{b}{sb}

\substitutesilent{b}{db}

\substitutesilent{m}{mb}

\substitutesilent{m}{l}

The following shape substitutions are standard:

\substitutenoisy{ui}{it}

\substitutesilent{it}{sl}

\substitutesilent{sl}{it}

\transformfont{〈font-name〉}{〈transformed font〉}

This makes a raw transformed font, for example expanded, slanted, condensed
or re-encoded. It is the responsibility of the device driver to implement this
transform. Each \transformfont command writes out an mtx file and a raw
pl file for 〈font-name〉.
A 〈transformed font〉 is given by the following commands:

\fromafm{〈afm〉}
\frompl{〈pl〉}
\frommtx{〈mtx〉}

This reads the metrics of a font which is about to be transformed from an
external file. Both \fromafm and \frompl write out an mtx file corresponding
to the afm or pl file. In addition, \formafm also writes out a raw pl file,
containing just the glyph metrics but no kerning information.

\scalefont{〈integer expression〉}{〈transformed font〉}
\xscalefont{〈integer expression〉}{〈transformed font〉}
\yscalefont{〈integer expression〉}{〈transformed font〉}
\slantfont{〈integer expression〉}{〈transformed font〉}

This applies a geometric transformation to the font metrics of 〈transformed font〉.
The scale factor or slant factor are given in 1000 units to the design size. Typical
examples are 167 for slanted fonts or 850 for condensed fonts.

\reencodefont{〈etx 〉}{〈transformed font〉}

This rearranges the encoding vector of 〈transformed font〉.
For example, to create an oblique, 8r-encoded version of Adobe Times called
ptmro8r you say:

\transformfont{ptmro8r}{\reencodefont{8r}{\slantfont{167}{\fromafm{ptmr8a}}}}

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 23

This will create ptmr8a.mtx, ptmr8a.pl, ptmro8r.mtx and ptmro8r.pl, which
can then be used as raw fonts in \installfont commands. The same transfor-
mation can also be achieved in two steps:

\transformfont{ptmr8r}{\reencodefont{8r}{\fromafm{ptmr8a}}}

\transformfont{ptmro8r}{\slantfont{167}{\frommtx{ptmr8r}}}

This will create ptmr8a.mtx, ptmr8a.pl, ptmr8r.mtx, ptmr8r.pl, ptmro8r.mtx
and ptmro8r.pl.

You will have to inform your device driver about the transformed font, using
the syntax appropriate for that driver. For example, in dvips you add a line to
psfonts.map:

ptmro8r Times-Roman ".167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc

\declaresize{〈size〉}{〈fd-size-range〉}

This declares a new size, and gives the fd commands for it. For example,
fontinst.sty declares the following sizes:

\declaresize{}{<->}

\declaresize{5}{<5>}

\declaresize{6}{<6>}

\declaresize{7}{<7>}

\declaresize{8}{<8>}

\declaresize{9}{<9>}

\declaresize{10}{<10>}

\declaresize{11}{<10.95>}

\declaresize{12}{<12>}

\declaresize{14}{<14.4>}

\declaresize{17}{<17.28>}

\declaresize{20}{<20.74>}

\declaresize{25}{<24.88>}

\declareencoding{〈string〉}{〈etx 〉}

This declares which etx file corresponds to which encoding string. For example,
fontinst.sty declares the following encoding strings:

\declareencoding{TEX TEXT}{OT1}

\declareencoding{TEX TEXT WITHOUT F-LIGATURES}{OT1}

\declareencoding{TEX TYPEWRITER TEXT}{OT1TT}

\declareencoding{TEX MATH ITALIC}{OML}

\declareencoding{TEX MATH SYMBOLS}{OMS}

\declareencoding{TEX MATH EXTENSION}{OMX}

\declareencoding{EXTENDED TEX FONT ENCODING - LATIN}{T1}

\declareencoding{TEX TEXT COMPANION SYMBOLS 1---TS1}{TS1}

\declareencoding{TEXBASE1ENCODING}{8r}

\declareencoding{TEX TYPEWRITER AND WINDOWS ANSI}{8y}

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 24

5.1 Install commands

The 〈install commands〉 describe the fonts, glyphs and encodings used to build
fonts. The 〈install commands〉 are:

\installfamily{〈encoding〉}{〈family〉}{〈fd-commands〉}

This produces a LATEX family with the given encoding and family, for example
to create the Cork-encoded Times family, you say:

\installfamily{T1}{ptm}{}

The 〈fd-commands〉 are executed every time a font in that family is loaded, for
example to stop the Courier font from being hyphenated you say:

\installfamily{T1}{pcr}{\hyphenchar\font=-1}

\installfont{〈font-name〉}{〈file-list〉}{〈etx 〉}
{〈encoding〉}{〈family〉}{〈series〉}{〈shape〉}{〈size〉}

This produces a TEX virtual font called 〈font-name〉 from a comma-separated
〈file-list〉 which should be .mtx, .afm or .pl filenames, with an optional ‘scaled
〈scale〉’ suffix. Any .afm files are also converted into .pl files, for use as ‘raw’
fonts. The resulting TEX font is encoded using 〈etx 〉.etx, and can be accessed
in LATEX 2ε with the given 〈encoding〉, 〈family〉, 〈series〉 and 〈shape〉. The 〈size〉
is either declared by \declaresize, or is an fd size specification.

For example, to install the T1-encoded Times Roman font (using T1.etx and
latin.mtx), you say:

\installfont{ptmr8t}{ptmr8r,latin}{T1}

{T1}{ptm}{m}{n}{}

To install a OT1-encoded Times Roman font with a scaled version of Symbol
for the Greek letters, you say:

\installfont{zptmrsy}{ptmr8r,psyr scaled 1100,latin}{OT1}

{OT1}{ptm}{m}{n}{}

This instruction sets the rawscale variable used by \setrawglyph, \setnotglyph
and \setkern.

\installrawfont{〈font-name〉}{〈file-list〉}{〈etx 〉}
{〈encoding〉}{〈family〉}{〈series〉}{〈shape〉}{〈size〉}

This is similar to \installfont except that it produces a TEX raw font as pl
file rather than a virtual font.

For example, to install an 8r-encoded Times Roman raw font (using 8r.etx and
8r.mtx), you say:

\installfont{ptmr8t}{ptmr8r,8r}{8r}

{8r}{ptm}{m}{n}{}

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 25

5.2 The \latinfamily command

The \latinfamily command is essentially a short-cut to save you preparing a
huge file with many different fontinst commands in it.

It takes afm or mtx files as the source of font metric data to work with. Usually,
you have a set of afm files. They must be named according to a subset of the
Fontname naming scheme. To illustrate the process, here is an edited part of
the console log from a use of \latinfamily:

\latinfamily{pad}{}

This log does not show fontinst ‘in action’; it’s just to illustrate which fonts
are looked for when you use the \latinfamily command.

INFO> to make LaTeX font shape <pad,m,n,> seek padr8r.mtx

INFO> to make LaTeX font shape <pad,m,sc,> seek padrc8r.mtx

INFO> to make LaTeX font shape <pad,m,sl,> seek padro8r.mtx

INFO> to make LaTeX font shape <pad,m,it,> seek padri8r.mtx

INFO> to make LaTeX font shape <pad,m,n,c> seek padr8rn.mtx

INFO> to make LaTeX font shape <pad,m,sc,c> seek padrc8rn.mtx

INFO> to make LaTeX font shape <pad,m,sl,c> seek padro8rn.mtx

INFO> to make LaTeX font shape <pad,m,it,c> seek padri8rn.mtx

The important point to notice is that fontinst needs an 8r encoded mtx file
for each font when you are using the latinfamily command. If it can’t find
an 8r encoded mtx file, it’ll look for for an 8a encoded afm file. It will auto-
matically turn the file it finds into an 8r encoded mtx file. So when fontinst
says ‘seek padr8r.mtx’, it is in fact looking for padr8r.mtx and padr8a.afm.
Whatever it finds, it will end up with padr8r.mtx to work on.

The first line of the log shows that fontinst is trying to create a vpl file for
pad/m/n. That is, font family pad (Adobe Garamond), font series m (normal
‘book’ or ‘regular’ weight), and font shape n (normal upright).

If it finds what it’s looking for, it will create the files:

padr7t.vpl

padr8t.vpl

padr8c.vpl

And add these lines to the given fd files:

OT1pad.fd: \DeclareFontShape{OT1}{pad}{m}{n}{<-> padr7t}{}

T1pad.fd: \DeclareFontShape{T1} {pad}{m}{n}{<-> padr8t}{}

TS1pad.fd: \DeclareFontShape{TS1}{pad}{m}{n}{<-> padr8c}{}

This means you will have three new fonts to use in LATEX: the OT1, T1 and
TS1 encoded versions of pad/m/n. You’ll be able to select (say) T1/pad/m/n by
saying:

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 26

\fontencoding{T1}\fontfamily{pad}\fontseries{m}\fontshape{n}\selectfont

This is the clumsiest way of selecting that particular font, but I’ve done it to
illustrate exactly what’s happening.

The next line:

INFO> to make LaTeX font shape <pad,m,sc,> seek padrc8r.mtx

shows that fontinst is trying to install a small caps font. If you have a real
small caps metric file named padrc8r.mtx (don’t forget it’ll look for an 8a
encoded afm file), fontinst will go ahead and create the vpl file and fd file
entry as expected.

But you don’t normally have a real small caps font, so fontinst will quite
happily produce a fake small caps font. To do this, it looks for a suitable metric
file by dropping the ‘c’:

‘Hmm. . . I can’t find padrc8r, so I’ll look for padr8r.’

And you will eventually have:

padrc7t.vpl

padrc8t.vpl

And add these lines to the given fd files:

OT1pad.fd: \DeclareFontShape{OT1}{pad}{m}{sc}{<-> padrc7t}{}

T1pad.fd: \DeclareFontShape{T1} {pad}{m}{sc}{<-> padrc8t}{}

(Note that it won’t install a TS1-encoded small caps font because TS1 is a text
symbol font, which would look the same in the upright and small caps shape.)

The next log line shows fontinst trying to create a vpl for the oblique version
of Adobe Garamond:

INFO> to make LaTeX font shape <pad,m,sl,> seek padro8r.mtx

It’s quite usual for an oblique version to be unavailable, but fontinst has a
way round this: it can fake an oblique font from the corresponding ‘straight’
version:

‘Oh dear: I can’t find padro8r, so I’ll look for padr8r and use clever
maths to fake a slanted version.’

This is not as straightforward as the small caps case. Fontinst only works out
what the metrics ought to be if the entire font is slanted to the right. It’s up to
the DVI driver to actually print a slanted font. Dvips can do this.

You will eventually have:

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 27

padro7t.vpl

padro8t.vpl

padro8c.vpl

And these lines added to the given fd files:

OT1pad.fd: \DeclareFontShape{OT1}{pad}{m}{sl}{<-> padro7t}{}

T1pad.fd: \DeclareFontShape{T1} {pad}{m}{sl}{<-> padro8t}{}

TS1pad.fd: \DeclareFontShape{TS1}{pad}{m}{sl}{<-> padro8c}{}

The next line is straightforward:

INFO> to make LaTeX font shape <pad,m,it,> seek padri8r.mtx

If fontinst can’t find a suitable metrics file (padri8r.mtx or padri8a.afm),
it carries on without doing anything. If it does find a suitable metrics file, it
churns away until you will eventually have:

padri7t.vpl

padri8t.vpl

padri8c.vpl

And these lines added to the given fd files:

OT1pad.fd: \DeclareFontShape{OT1}{pad}{m}{it}{<-> padri7t}{}

T1pad.fd: \DeclareFontShape{T1} {pad}{m}{it}{<-> padri8t}{}

TS1pad.fd: \DeclareFontShape{TS1}{pad}{m}{it}{<-> padri8c}{}

The next line is a bit different. Fontinst is now trying to create a vpl file for
a condensed font:

INFO> to make LaTeX font shape <pad,m,n,c> seek padr8rn.mtx

If it finds a suitable metric file (Adobe Garamond, medium weight, normal
upright shape, condensed), it will eventually produce:

padr7tn.vpl

padr8tn.vpl

padr8cn.vpl

And these lines added to the given fd files:

OT1pad.fd: \DeclareFontShape{OT1}{pad}{mc}{n}{<-> padr7tn}{}

T1pad.fd: \DeclareFontShape{T1} {pad}{mc}{n}{<-> padr8tn}{}

TS1pad.fd: \DeclareFontShape{TS1}{pad}{mc}{n}{<-> padr8cn}{}

There is no standard LATEX command like \bfseries to select the medium
condensed (mc) series created here. If you want to use this font, you must do
something like:

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 28

\fontfamily{pad}\fontseries{mc}\selectfont

If it doesn’t find a suitable metric file for a narrow series, fontinst will just
skip over and continue, unless you specifically tell it to fake a narrow series.

And so the process continues: fontinst attempts to create vpl files for con-
densed versions of all the font shapes met so far, and then goes on to:

INFO> to make LaTeX font shape <pad,b,n,> seek padb8r.mtx

And again, if it finds a suitable metric file (padb8r.mtx or padb8a.afm), it’ll
potter off and create the files:

padb7t.vpl

padb8t.vpl

padb8c.vpl

And these lines added to the given fd files:

OT1pad.fd: \DeclareFontShape{OT1}{pad}{b}{n}{<-> padb7t}{}

T1pad.fd: \DeclareFontShape{T1} {pad}{b}{n}{<-> padb8t}{}

TS1pad.fd: \DeclareFontShape{TS1}{pad}{b}{n}{<-> padb8c}{}

With this step done, fontinst will try to create vpl files for the small caps,
slanted, and italic versions of pad/b; and then it’ll try to create condensed
versions of all those:

INFO> to make LaTeX font shape <pad,b,n,> seek padb8r.mtx

INFO> to make LaTeX font shape <pad,b,sc,> seek padbc8r.mtx

INFO> to make LaTeX font shape <pad,b,sl,> seek padbo8r.mtx

INFO> to make LaTeX font shape <pad,b,it,> seek padbi8r.mtx

INFO> to make LaTeX font shape <pad,b,n,c> seek padb8rn.mtx

INFO> to make LaTeX font shape <pad,b,sc,c> seek padbc8rn.mtx

INFO> to make LaTeX font shape <pad,b,sl,c> seek padbo8rn.mtx

INFO> to make LaTeX font shape <pad,b,it,c> seek padbi8rn.mtx

If it manages to find the files it needs to create the vpl files to use all those
fonts with LATEX, you’ll end up with the following lines in the T1 fd file (I’ve
ignored the OT1 fd file to save some space):

\DeclareFontShape{T1} {pad}{b} {n} {<-> padb8t}{}

\DeclareFontShape{T1} {pad}{b} {sc}{<-> padbc8t}{}

\DeclareFontShape{T1} {pad}{b} {sl}{<-> padbo8t}{}

\DeclareFontShape{T1} {pad}{b} {it}{<-> padbi8t}{}

\DeclareFontShape{T1} {pad}{bc}{n} {<-> padb8tn}{}

\DeclareFontShape{T1} {pad}{bc}{sc}{<-> padbc8tn}{}

\DeclareFontShape{T1} {pad}{bc}{sl}{<-> padbo8tn}{}

\DeclareFontShape{T1} {pad}{bc}{it}{<-> pckbi8tn}{}

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 29

To translate into English: Adobe Garamond bold in ‘normal’, small caps,
slanted, and italic versions, as well as condensed versions of all four.

Again, because there’s no convenient way of selecting the condensed versions
with existing LATEX commands, you need to say something like:

\fontfamily{pad}\fontseries{bc}\selectfont

to use the bold condensed (bc) versions of this font; you can of course use
\itshape, \scshape, \slshape, and upshape to switch between the italic, small
caps, slanted, and ‘normal’ versions of Adobe Garamond bold condensed once
you’ve got pad/bc selected.

So far, you’ve seen \latinfamily look at two different weights and two different
widths. For each weight, \latinfamily will try and install eight different fonts
as you can see above. It will try and install the same eight different fonts for
each of the following different weights:

LATEX Fontname description
ul a ultra light
el i extra light
l l light
m k, r book, regular
mb m medium
db d demi bold
sb s semi bold
b b bold
eb c, h, x black, heavy, extra bold
ub u ultra bold

The LATEX column contains the label that will be used in the \DeclareFontShape
command to specify the font series. The Fontname column contains the width
specifier used to name the font metric file that fontinst will look for in that
case.

In other words, at some stage fontinst will look for:

INFO> to make LaTeX font shape <pad,sb,n,> seek pads8r.mtx

and if it finds a suitable metric file (pads8r.mtx or pads8a.afm), it will create:

pads7t.vpl

pads8t.vpl

pads8c.vpl

and fd file entries like this:

OT1pad.fd: \DeclareFontShape{OT1}{pad}{sb}{n}{<-> pads7t}{}

T1pad.fd: \DeclareFontShape{T1} {pad}{sb}{n}{<-> pads8t}{}

TS1pad.fd: \DeclareFontShape{TS1}{pad}{sb}{n}{<-> pads8c}{}

and since sb is not a normal LATEX font series, you’ll need to use something like:

\fontfamily{pad}\fontseries{sb}\selectfont

to use this font.

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 30

6 Encoding files

An encoding file (or .etx file) is a TEX document consisting of:

\relax

ignored material
\encoding

〈encoding commands〉
\endencoding

ignored material

This describes the encoding of a font, using the 〈encoding commands〉.
Since the encoding file ignores any material between \relax and \encoding, an
encoding file can also be a LATEX document.

6.1 Encoding commands

The 〈encoding commands〉 are:

\nextslot{〈number〉}

Sets the number of the next slot. If there is no \nextslot command, the number
is the successor of the previous slot.

\skipslots{〈number〉}

Advances the number of the next slot. New feature
v1.8

\setslot{〈glyph〉}
〈slot commands〉
\endsetslot

Sets the slot of the 〈glyph〉. The 〈slot commands〉 describe the glyph, and give
its usage in TEX.

\inputetx{〈file〉}

Inputs the 〈encoding commands〉 of 〈file〉.etx.

6.2 Encoding variables

The encoding files may set the following integer variables.

boundarychar

The slot of the boundary character.

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 31

fontdimen(n)

The value of the n-th font dimension.

letterspacing

The extra space to be added between every glyph.

\int{〈glyph〉}

The slot number for 〈glyph〉.
The encoding files may set the following string variables:

codingscheme

The font coding scheme.

6.3 Slot commands

The 〈slot commands〉 are:

\comment{〈text〉}

A comment, which is ignored by fontinst.

\ligature{〈ligtype〉}{〈glyph〉}{〈glyph〉}

Specifies a ligature of type 〈ligtype〉 from the current glyph followed by the first
glyph to the second glyph. The 〈ligtype〉s are as in vpl files (see the vptovf
Web source for more details). For example:

\setslot{ff}

\ligature{LIG}{i}{ffi}

\ligature{LIG}{l}{ffl}

\comment{The ‘ff’ ligature.}

\endsetslot

\usedas{〈type〉}{〈control sequence〉}

Sets the TEX control sequence for this slot, with the type taken from: New feature
Obsolete?!

char accent mathord

mathbin mathrel mathopen

mathclose mathpunct mathvariable

mathaccent mathdelim

\nextlarger{〈glyph〉}

Sets a nextlarger entry from the current slot to the 〈glyph〉.

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 32

\varchar

〈varchar commands〉
\endvarchar

Sets a varchar entry for the current slot, using the 〈varchar commands〉. The
〈varchar commands〉 are:

\vartop{〈glyph〉}
\varmid{〈glyph〉}
\varbot{〈glyph〉}
\varrep{〈glyph〉}

Sets the top, middle, bottom, or repeated 〈glyph〉 of the varchar.

7 Metric files

A metric file (or .mtx file) is a TEX document consisting of:

\relax

ignored material
\metrics

〈metric commands〉
\endmetrics

ignored material

This describes the glyphs in a font, using the 〈metric commands〉.

7.1 Metric commands

The 〈metric commands〉 are:

\setglyph{〈name〉}
〈glyph commands〉
\endsetglyph

If the glyph called 〈name〉 is undefined, it is built using the 〈glyph commands〉
given below, for example:

\setglyph{IJ}

\glyph{I}{1000}

\glyph{J}{1000}

\endsetglyph

\setglyph{Asmall}

\glyph{A}{850}

\endsetglyph

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 33

\resetglyph{〈name〉}
〈glyph commands〉
\endsetglyph

Gives the definition of the glyph called 〈name〉 using the 〈glyph commands〉.

\unsetglyph{〈name〉}

Makes the glyph called 〈name〉 undefined.

\setrawglyph{〈name〉}{〈font〉}{〈dimen〉}{〈integer〉}
{〈integer〉}{〈integer〉}{〈integer〉}{〈integer〉}

This sets a glyph called 〈name〉 from the 〈font〉, which has the given design size,
slot, width, height, depth and italic correction. If the integer variable rawscale
is set, the glyph will be scaled by that amount. This command will usually be
generated automatically from an afm or pl file.

\setnotglyph{〈name〉}{〈font〉}{〈dimen〉}
{〈integer〉}{〈integer〉}{〈integer〉}{〈integer〉}

This sets a glyph called 〈name〉-not, which is present in the 〈font〉, but is
not in the default encoding. It takes the same arguments as \setrawglyph,
although the slot will normally be −1. This command will usually be generated
automatically from an afm file.

\setkern{〈glyph〉}{〈glyph〉}{〈integer expression〉}

Sets a kern between the two glyphs, scaled by the current value of rawscale, if
it has been set.

Note that there is a bug with the current implementation: if more than one kern
value is given for the same pair of glyphs, then both are written to the (V)PL
file. Really it should only be the first pair (to fit with all the other \set...
commands). This bug is not likely to be fixed soon.

\setleftkerning{〈glyph〉}{〈glyph〉}{〈integer expression〉}
\setrightkerning{〈glyph〉}{〈glyph〉}{〈integer expression〉}

Sets the amount by which the first glyph should mimic how the second glyph
kerns on the left or right, for example:

\setleftkerning{Asmall}{A}{850}

\setrightkerning{Asmall}{A}{850}

\setleftkerning{IJ}{I}{1000}

\setrightkerning{IJ}{J}{1000}

Sets the amount by which the first glyph should mimic how the second glyph
kerns on the right, for example:

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 34

\setleftrightkerning{〈glyph〉}{〈glyph〉}{〈integer expression〉}

Sets the amount by which the first glyph should mimic how the second glyph New feature
v1.8kerns on both sides, for example:

\setleftrightkerning{Asmall}{A}{850}

\inputmtx{〈file〉}

Inputs the 〈metric commands〉 of 〈file〉.mtx.

7.2 Metric variables

The metrics files may set the following integer variables:

ascender

capheight

descender

xheight

The height of the tallest lower-case letter.

The height of the tallest capital letter.

The depth of the lowest lower-case letter.

The x-height of lower-case letters without ascenders.

italicslant

The ratio of the italic slant, given in units of rightward movement for each 1000
units of upward movement.

minimumkern

Any kern smaller than this amount is ignored.

monowidth

This variable is set if the font is monowidth.

underlinethickness

The width of the underline rule.

〈glyph〉-spacing

The letter spacing for the glyph 〈glyph〉.
The metrics files may set the following dimension variables:

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 35

designsize

The design size of the font.

7.3 Glyph commands

The 〈glyph commands〉 are:

\glyph{〈glyph〉}{〈integer expression〉}

Sets the named glyph 〈glyph〉 at the given scale, with 1000 as the natural size.
This:

• Advances the current glyph width.

• Sets the current glyph height to be at least the height of the named glyph,
adjusted for the current vertical offset.

• Sets the current glyph depth to be at least the depth of the named glyph,
adjusted for the current vertical offset.

• Sets the current glyph italic correction to be the same as the set glyph.

The named glyph must have already been defined, otherwise an error will occur.
For example:

\setglyph{fi}

\glyph{f}{1000}

\glyph{i}{1000}

\endsetglyph

\glyphrule{〈integer expression〉}{〈integer expression〉}

Sets a rule of the given width and height, for example:

\setglyph{underline}

\glyphrule{333}{40}

\endsetglyph

\glyphspecial{〈text〉}

Sets a driver-dependent \special, for example:

\setglyph{crest}

\glyphspecial{Filename: crest.eps}

\endsetglyph

\glyphwarning{〈text〉}

Sets a warning \special, and produces a warning message each time the glyph
is used, for example:

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 36

\setglyph{missingglyph}

\glyphrule{500}{500}

\glyphwarning{Missing glyph ‘missingglyph’}

\endsetglyph

\movert{〈integer expression〉}

Moves right by the given amount, and advances the current glyph width, for
example:

\setglyph{Asmall}

\movert{50}

\glyph{A}{700}

\movert{50}

\endsetglyph

\moveup{〈integer expression〉}

Moves up by the given amount, and advances the current vertical offset. Each
glyph should always end at vertical offset zero, for example:

\setglyph{onehalf}

\moveup{500}

\glyph{one}{700}

\moveup{-500}

\glyph{slash}{1000}

\moveup{-200}

\glyph{two}{700}

\moveup{200}

\endsetglyph

\push

〈glyph commands〉
\pop

Performs the 〈glyph commands〉 without adjusting the current position or glyph
width, for example:

\setglyph{aacute}

\push

\movert{\div{\sub{\width{a}}{\width{acute}}}{2}}

\glyph{acute}{1000}

\pop

\glyph{a}{1000}

\endsetglyph

\glyphpcc{〈glyph〉}{〈integer expression〉}{〈integer expression〉}

This is generated from PCC instructions in an afm file, and is syntactic sugar for:

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 37

\push

\movert{〈first integer expression〉}
\moveup{〈second integer expression〉}
\glyph{〈glyph〉}{1000}
\pop

\resetwidth{〈integer expression〉}
\resetheight{〈integer expression〉}
\resetdepth{〈integer expression〉}
\resetitalic{〈integer expression〉}

Sets the width, height, depth, or italic correction of the current glyph.

\samesize{〈glyph〉}

Sets the dimensions of the current glyph to be the same as 〈glyph〉.
Inside the definition of 〈glyph〉, you can use expressions such as \width{〈glyph〉},
which will refer to the glyph defined so far. For example, a display summation
sign can be defined to be a text summation

∑
scaled 120% with 0.5 pt extra

height and depth using:

\setglyph{summationdisplay}

\glyph{summationtext}{1200}

\resetheight{\add{\height{summationdisplay}}{50}}

\resetdepth{\add{\depth{summationdisplay}}{50}}

\endsetglyph

Within a \resetglyph, these expressions will refer to the previous definition of
the glyph. For example, you can add sidebearings to the letter ‘A’ with:

\resetglyph{A}

\movert{25}

\glyph{A}{1000}

\movert{25}

\endresetglyph

8 Future work

The fontinst software is now fairly stable, but there are some things I would
like to do sometime. . .

• See if it’s possible to automatically generate ‘first cut’ math fonts.

• Add a way to use alternate sets and SC fonts.

• Find out if there’s a way to generate smaller VPLs for T1 small caps fonts.

• Allow reals rather than just integers in AFM files.

• Fix the bug with multiple \setkern entries.

A more detailed list is distributed as the file TODO.

Alan Jeffrey and Rowland McDonnellfontinst: Font installation software for TEX 38

Acknowledgements

I’d like to thank all of the fontinst α-testers, especially Karl Berry, Damian
Cugley, Steve Grahthwohl, Yannis Haralambous, Alan Hoenig, Rob Hutchings,
Constantin Kahn, Peter Busk Laursen, Ciarán Ó Duibh́ın, Hilmar Schlegel, Paul
Thompson, Norman Walsh and John Wells, who made excellent bug-catchers!

Thanks to Barry Smith, Frank Mittelbach, and especially Sebastian Rahtz for
many useful email discussions on how virtual fonts should interact with LATEX 2ε.

Thanks to Karl Berry and Damain Cugley for detailed comments on this docu-
mentation.

Thanks to David Carlisle for the use of his trig macros for calculating trignom-
etry.

Warranty and distribution

There is no warranty for the fontinst package, to the extent permitted by
applicable law. Except when otherwise stated in writing, the author provides
the program ‘as is’ without warranty of any kind, either expressed or implied,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. The entire risk as to the quality and performance
of the program is with you. Should the package prove defective, you assume the
cost of all necessary servicing, repair or correction.

In no event unless required by applicable law or agreed to in writing will the
author be liable to you for damages, including any general, special, incidental
or consequential damages arising out of the use or inability to use the program
(including but not limited to loss of data or data being rendered inaccurate or
losses sustained by you or third parties or a failure of the program to operate
with any other programs), even if such holder or other party has been advised
of the possibility of such damages.

Redistribution of unchanged files is allowed provided that all files listed in the
MANIFEST file are distributed.

If you receive only some of these files from someone, or if you receieve altered
files, then complain!

