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1 はじめに

「一次独立」「一次従属」という用語は、元はベクトルの集まりに対するものだが、工
学では関数の集まりに対しても用いられ、線形微分方程式の理論などで目にすること
が多い。

それは、「関数」を抽象化された一般的な「ベクトル」と考えていることになるのであ
るが、「ベクトル」という言葉に引きづられてしまうと、初学者は誤解しがち、あるい
は概念の取得が難しくなるため、「ベクトル」「ベクトル空間」という言葉を使わずに
説明している本が多いように思う。

逆にそのためか、やや誤解が生じているかのような質問を、最近ネット上でいくつか
目にした。本稿ではまずそのあたりについて、抽象化された一般的なベクトル空間の
話をすることで説明する。

また、関数の集まりの一次独立性の判定には、ロンスキー行列式 (ロンスキアン) が用
いられることも多いが、このロンスキー行列式の使い方についても誤解している質問
がいくつか見受けられた。それに関しても、教科書には通常書かれていないことも含
めて本稿で説明する。

なお、本稿の主な対象は、関数に対する一次独立性、一次従属性などを学ぶ学生、例
えば、大学工学部などで線形常微分方程式を学ぶ学生を考えている。

2 一般ベクトル空間の公理と関数空間

まずは、抽象化された一般のベクトル空間について簡単に紹介する。

通常は、大きさと方向を持つものとして定義される幾何ベクトル、あるいはその成分
表示である数ベクトルを「ベクトル」と呼び、その集合を「ベクトル空間」と呼ぶの
であるが、ベクトル同様の計算、すなわち和やスカラー倍、内積などの計算が可能な
別の対象物にもベクトルの概念を広げたものが「一般のベクトル空間」である。

集合 V の任意の元 a, b と任意の実数 k に対して、和 a+b とスカラー倍 ka が定義で
き (当然和もスカラー倍も V の元であることが必要)、次の公理を満たすとき、V (と
和、とスカラー倍の構造を含めたもの) を (一般の) ベクトル空間と呼ぶ。
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• 公理 1: a+ b = b+ a (任意の a, b ∈ V に対し)

• 公理 2: (a+ b) + c = a+ (b+ c (任意の a, b, c ∈ V に対し)

• 公理 3: 0 ∈ V があり、任意の a ∈ V に対し a+ 0 = a となる

• 公理 4: 任意の a ∈ V に対して a+ a′ = 0 となる a′ ∈ V がある

• 公理 5: k(a+ b) = ka+ kb (任意の a, b ∈ V , 任意の実数 k に対し)

• 公理 6: (k +m)a = ka+ma (任意の a ∈ V , 任意の実数 k,m に対し)

• 公理 7: (km)a = k(ma) (任意の a ∈ V , 任意の実数 k,m に対し)

• 公理 8: 1a = a (任意の a ∈ V に対し)

いずれも通常のベクトルでは当然成立する性質であるが、逆に上の公理が満たされれ
ば、基本的なベクトルの計算や展開などは通常のベクトルと同じように計算できるこ
とになる。

なお、上の公理だけから、例えば公理 3 を満たす 0 は一つしかないことや、0a = 0 と
なること、公理 4 の a′ が (−1)a であることなども証明できる。

そしてこの公理は、普通の幾何ベクトルや数ベクトルだけが満たすわけではなく、例
えば、

• V = C0(I) = 区間 I 上の連続関数全体の集合

• V = R[x] = 実数係数の x の多項式全体の集合

なども、自然な和やスカラー倍に対して満たしていて「ベクトル空間」と見ることが
できる。この場合、連続関数や多項式などを「ベクトル」と見ることになるわけだが、
それは一点の値を見ているのではないし、通常の数ベクトルのように幾何ベクトルと
して図に書けるわけでもないし、幾何ベクトルのような「方向」があるわけでもない。

だから「ベクトル」という言葉を使うと誤解を招きやすいので、関数が元のベクトル
空間のことを「関数空間」と呼ぶこともある。

例えば、V = C0(I) の場合、C0(I) 3 f は f : I → R という写像が関数本体であり、
対応すべてを見ていることになる。グラフ全体を見ている、と考えてもよい。

C0(I) 3 f, g の和 f + g は、x ∈ I に対して f(x) + g(x) を対応させる写像 f + g : x 7→
f(x) + g(x) を 和として見ていて、これも当然 I 上の連続関数となるから和が定義で
きるわけである。y = x と y = x2 の和を y = x + x2 という関数とする、といったこ
とである。
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スカラー倍も x ∈ I に kf(x) を対応させる写像を kf と考える、ということである。

だから、例えば f, g ∈ C0(I) がベクトルとして f = g というのは、「ある x に対して
f(x) = g(x) になる」ということではなく、「すべての x ∈ I に対して f(x) = g(x) に
なる」ということを意味する。数学ではこれを「恒等的に f(x) = g(x)」のように表現
することが多い。

例えば x + 3 という連続関数は、x = −3 では 0 となるが、ベクトル空間の元として
は x + 3 と 0 は等しくはなく全然別物、と見るわけである。なお、0 という定数関数
が、当然 C0(I) の零ベクトルである。

多項式の集合 R[x] も同様で、和もまた多項式、実数倍もまた多項式なので、ベクトル
空間となる。なお、多項式の場合は、ベクトル空間の元としての等号「p = q」は、本
来は、「p と q の最高次数が同じで、各次数の p と q の係数がすべて等しい」ことを意
味するが、多項式を R 上の関数と見たときに「すべての実数 x に対して p(x) = q(x)

が成り立つ」とも言うこともできる。実際、m 次の多項式同士は、異なる (m+ 1) 個
での値が等しければ、多項式として等しくなることが言えるので、係数が等しいとい
うこととすべての x で等しいということは同値になる。

そして R[x] でも、0 という多項式1 (すべての係数が 0 の多項式) が R[x] の零ベクト
ルであり、x+ 3 が x = −3 の 1 点で 0 になることと、多項式として 0 になることは
全く別である。

3 一次従属性、一次独立性の定義

次に、一般ベクトル空間における一次従属、一次独立の定義を示す。

一般のベクトル空間 V の元 a1, . . . ,an に対して、

• a1, . . . ,an の一次結合 とは、k1a1 + · · ·+ knan の形の式 (kj は実数)

• a1, . . . ,an が一次従属であるとは、そのうちのひとつが、その他のものの一次結
合として表される状態。

• a1, . . . ,an が一次独立であるとは、それが一次従属ではない状態。

例えば、2a+ 3b は a, b の一次結合で、a, b, 2a+ 3b は一次従属である。

R[x] では、例えば 3 + 2x は 1, x の一次結合、1, x, 3 + 2x は一次従属であり、1, x, x2

は一次独立である (厳密にはこの一次独立性は自明ではなく証明が必要)。
1本稿の「多項式」という言葉は、むしろ単項式も多項式も (定数さえも) 含む「整式」という言葉

を使うべきかもしれないが、その意味での「多項式」という言い方も良く使われているので、本稿では
「整式」の意味で「多項式」と呼ぶことにする。
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一次独立であるか一次従属であるかの判定には、次の便利な定理がある。

定理 1

1. a1, . . . ,an ∈ V が一次従属である ⇐⇒ c1a1 + · · ·+ cnan = 0 となるような、少
なくとも 1 つは 0 でないものを含む実数 c1, . . . , cn の組がある

2. a1, . . . ,an ∈ V が一次独立である ⇐⇒ c1a1 + · · ·+ cnan = 0 となるような、実
数 c1, . . . , cn の組は、c1 = · · · = cn = 0 しかない

1. の「少なくとも . . .組がある」の部分は、(c1, . . . , cn) 6= (0, . . . , 0) のように、2. の
「実数 . . .しかない」の部分は、(c1, . . . , cn) = (0, . . . , 0) のように表現することもある。

なお、2. は 1. の対偶なので、線形代数の本では、通常いずれか一方のみを紹介して
いることが多い。よって証明も 1. か 2. のいずれか一方のみを行えばよい。

簡単に n = 3 として 1. を証明する。

証明

(=⇒)

a1,a2,a3 ∈ V が一次従属であるとき、いずれか 1 つが他の 2 つの一次結合で表
されるので、例えばそれを a1 とすると、a1 = k1a2 + k2a3 となる。
このとき、−a1 + k1a2 + k2a3 = 0 なので、c1 = −1, c2 = k1, c3 = k2 とすれば
c1 6= 0 の c1, c2, c3 の組が取れることになる。a2 や a3 の場合も同様。
(⇐=)

c1a1 + c2a2 + c3a3 = 0 でかつ c1, c2, c3 のうち少なくとも 1 つは 0 でないものが
あるとする。0 でないものが c1 だとすると、c1 で割って移項すれば、

a1 = −c2
c1
a2 −

c3
c1
a3

となって、a1 が a2,a3 の一次結合となるので、a1,a2,a3 は一次従属であること
になる。
c2 や c3 が 0 でない場合も同様。

この定理 1 を用いて、いくつかのベクトルの組の一次独立性を示す。

例 2

R3 の 3 つの数ベクトルa =

2
64

1

2

0

3
75 , b =

2
64

2

−1

3

3
75 , c =

2
64

−1

0

4

3
75 が一次独立で

あること。
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c1a+ c2b+ c3c = 0 とすると、

c1

2
64

1

2

0

3
75+ c2

2
64

2

−1

3

3
75+ c3

2
64

−1

0

4

3
75 =

2
64

0

0

0

3
75


c1 +2c2 −c3 = 0

2c1 −c2 = 0

3c2 +4c3 = 0

,

2
64

1 2 −1

2 −1 0

0 3 4

3
75
2
64

c1
c2
c3

3
75 =

2
64

0

0

0

3
75

となる。最後の行列の係数行列 A = [a b c]の行列式 |A|は、|A| = −1+(−6)+0

−0 − 0 − 16 = −23 6= 0 なので、A は逆行列を持ち、よってこの方程式は c1 =

c2 = c3 = 0 しか解を持たない。よって定理 1 より a, b, c は一次独立である。
これと同様にして、Rn の n 個の数ベクトルは、それを並べて作った n× n 行列
の行列式が 0 でなければ一次独立である。
逆にその行列式が 0 の場合は、連立一次方程式の理論から、少なくともひとつは
0 ではない c1, . . . , cn の解が存在することが知られているので、一次従属である。
つまり、Rn の n 個のベクトルに対しては、それらを並べた行列式が 0 でないこ
とと一次独立であることが同値になる。

例 3

R[x] での 1, x, x2 が一次独立であること。
c1, c2, c3 を実数の定数として、

c1 + c2x+ c3x
2 = 0

が成り立つとする。この「= 0」とは、多項式として 0 に等しい、ということであ
り、よって「c1 + c2x+ c3x

2 = 0」は恒等式であり、「2 次方程式」ではない。多項
式として 0 に等しい、ということは、両辺の各次数の係数が等しいことを意味す
るので、ここから c1 = c2 = c3 = 0 が直ちに従い、よって定理 1 により 1, x, x2 が
一次独立であることが示されたことになる。

例 4

C0(R) で 1, sin x, cos x が一次独立であること。
c1, c2, c3 を実数の定数として、

c1 + c2 sin x+ c3 cos x = 0
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が成り立つとする。この「= 0」も C0(R)の元としての等号なので、すべての実数
x に対して成り立つことを意味する。すべての実数で成立するので、例えば x = 0

とすれば c1 + c3 = 0 が得られ、x = π/2 とすれば c1 + c2 = 0 が得られ、x = π と
すれば c1 − c3 = 0 が得られ、この 3 本の式から、c1 = c2 = c3 = 0 となることが
わかる。よって定理 1 により 1, sin x, cos x は一次独立である。

4 ロンスキー行列式と一次独立性

3 節で例として示した関数の一次独立性には、定理 1 と、それが恒等式であることか
ら、方程式の本数を増やして係数 cj に対する連立方程式を解くことで係数が 0 を導
き、そこから一次独立性を得る、という方法を用いた。

この、恒等式から方程式の本数を増やす、という手順には、関数が微分可能である場
合は、「微分」によって増やすという方法もあり、その場合の係数行列の行列式が、本
節で考える「ロンスキー行列式」である。

区間 I 上の関数 f1(x), . . . , fn(x) が (n− 1) 回微分可能であるとき、行列式

W (x) = W (x; f1(x), . . . , fn(x)) =

∣∣∣∣∣∣∣∣∣∣∣

f1(x) · · · fn(x)

f ′
1(x) · · · f ′

n(x)
...

...

f
(n−1)
1 (x) · · · f (n−1)

n (x)

∣∣∣∣∣∣∣∣∣∣∣
(1)

を f1(x), . . . , fn(x) のロンスキー行列式、または ロンスキアン と呼ぶ。なお、数学者
に関連する式に、その人名に接尾語 -ian をつけた名前をつけることは良く行われてい
て、他にもヤコビアン (ヤコビ)、ラプラシアン (ラプラス)、ラグランジアン (ラグラ
ンジュ)、ハミルトニアン (ハミルトン)、ガウシアン (ガウス) などがある。

今

c1f1(x) + · · ·+ cnfn(x) = 0 (2)

とする。当然、(2) は定義域 I 内のすべての x で成り立つとする。これは恒等式なの
で、I の境界以外のすべての x に対して、この両辺を微分した式も等号が成立する。

c1f
′
1(x) + · · ·+ cnf

′
n(x) = 0 (3)

なお、注意しなければいけないが、これは (2) が恒等式だからできることであり、「方
程式」の場合はそうはいかない。
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例えば、「2 次方程式」x2 − 5x+ 4 = 0 は、x = 1, 4 という 2 点でのみ成立する式なの
で、この両辺を微分した 2x− 5 = 0 をその x が満たすことはない。

それは、導関数の定義には極限が用いられているためであり、微分ができるためには、
考えている x 1点だけでなく、xの周辺でも式が成立していなければいけないからであ
る。そのため、離散的な 2 点でしか成立しない 2 次方程式を微分することはできない。

I の境界以外の x には I に含まれる x の周囲の点もあり、恒等式ならばその周囲の I

の点でも等式が成立するので、両辺を微分しても等式がそのまま成立し、その式もま
た恒等式となる、ということになる。

より詳しく言えば、(2) で x を x+ h (h は十分小) と変えても x+ h ∈ I ならば (2) は
成立し、

c1f1(x+ h) + · · ·+ cnfn(x+ h) = 0 (4)

となり、そして (4) から (2) を引いて h で割ると

c1
f1(x+ h)− f1(x)

h
+ · · ·+ cn

fn(x+ h)− fn(x)

h
= 0 (5)

となり、h → 0 とすることで (3) が得られることになる。それに対して、2 次方程式の
方は、x+ h を代入する段階で等号が破綻してしまうので、微分することはできない。

そして fj(x) が (n− 1) 回まで微分可能であれば、(3) を繰り返し微分することで以下
の n 本の連立方程式を得ることができる。

c1f1(x) + · · ·+ cnfn(x) = 0

c1f
′
1(x) + · · ·+ cnf

′
n(x) = 0

· · ·
c1f

(n−1)
1 (x) + · · ·+ cnf

(n−1)
n (x) = 02

66664

f1(x) · · · fn(x)

f ′
1(x) · · · f ′

n(x)
...

...

f
(n−1)
1 (x) · · · f (n−1)

n (x)

3
77775

2
6664

c1
c2
...

cn

3
7775 =

2
6664

0

0
...

0

3
7775 (6)

この係数行列 A(x) の行列式 |A(x)| が (1) のロンスキー行列式 W (x) である。W (x)

が 0 でなければ、A(x) の逆行列が存在し、よって c1 = c2 = · · · = cn = 0 となるので、
定理 1 より f1(x), . . . , fn(x) は一次独立であることになる。

定理 5

I の境界以外の x でロンスキー行列式が W (x; f1(x), . . . , fn(x)) 6= 0 となる x が
存在すれば、f1(x), . . . , fn(x) は一次独立である
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ただ、この定理 5 についてネットでも見受けられた誤解しやすい点を 2 点指摘する。

• [a] f1(x), . . . , fn(x) が一次独立であるためには、「すべての x に対して W (x) 6= 0

でなければならない」ではないこと

• [b]「すべての x に対して W (x) = 0 ならば f1(x), . . . , fn(x) は一次従属である」
とは言えないこと

いずれも、ある状況の元では確かに成立するのであるが、それが故に誤解しやすい点
でもある。

まず [a] であるが、(6) は、あくまで c1, c2, . . . , cn の方程式であり、それが 0 に等しく
なるためには、方程式の x はなんでもよく、例えば、もし x = 0 でW (0) = |A(0)| 6= 0

であれば、それで c1 = · · · = cn = 0 が言え、一次独立であることがいえる。つまり、
一次独立であるためには、W (x) 6= 0 となる x が、I の境界以外にひとつでもあれば
よい。

ネットでは、「W (x) を計算したら、x = a 以外では 0 にならないから一次独立だが、
x = a では W (a) = 0 となってしまうが、そこでは一次独立ではないのでは」などと
いう質問が見受けられたが、そういうことではない。すべての x で W (x) 6= 0 である
必要は全くなく、一点でも W (x) 6= 0 となる点があれば、それで一次独立であること
がいえる。

次に [b] であるが、「少なくとも一つの点で W (x) 6= 0」の否定は「すべての x で
W (x) = 0」、すなわち「W (x)が恒等的に 0」であるが、[b] はそれに関係する誤解と思
われる。言えるのはあくまで「少なくとも一つの点で W (x) 6= 0 ならば、一次独立」で
あり、定理 5の対偶も成立するがそれは、「一次従属ならば、すべての xで W (x) = 0」
であり、この逆の「すべての x で W (x) = 0 ならば、一次従属」は一般には成立しな
い。その反例も作れるが、それについては 6 節で紹介する。

なお、工学の教科書でこのロンスキー行列式が登場するのは、主に高階線形の常微分
方程式の一般論の箇所であり、例えば一つの微分方程式の解が作るベクトル空間の解
の一次独立性の判定に、このロンスキー行列式が用いられる。その「一つの高階線形
斉次常微分方程式の解である関数群 f1(x), . . . , fn(x)」という限定された条件下では、
ロンスキー行列式についても、一般的な性質よりもかなり強いことが言えてしまうた
め、その命題を一般的なロンスキー行列式の性質だと覚えてしまった場合も [a],[b] の
ような誤解が起きてしまうことになる。ちなみに、常微分方程式の解に対して成立し
てしまう強い性質とは以下のようなものである。

• ロンスキー行列式の値は、恒等的に 0 になるか、すべての x で 0 以外の値にな
るかのいずれか (一般には、0 と 0 でない値が混在しうる)
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• ロンスキー行列式がすべての x で 0 以外の値になるときはその解の集まりは一
次独立であり、ロンスキー行列式が恒等的に 0 のときは一次従属である (一般に
は、恒等的に 0 でも一次従属ではない場合がある)

この性質からもわかるが、ロンスキー行列式の線形微分方程式での役割はかなり重要
で、さらにこの一次独立性の判定以外にも、解の表現にも使われている。

5 ロンスキー行列式以外の一次独立性の判定法

もちろん、ロンスキー行列式以外にも、関数の集まりに対する一次独立性の判定法は
ある。

恒等式から係数の cj が 0 になることを示せばよいので、例えば、例 4 で行ったような
具体的な x の値をいくつか代入することで複数の方程式を作り出し、それによって判
定する方法がある。すなわち、(2) に x = x1, x2, . . . , xn を代入して、その連立方程式


c1f1(x1) + · · ·+ cnfn(x1) = 0

· · ·
c1f1(xn) + · · ·+ cnfn(xn) = 02

64
f1(x1) · · · fn(x1)

...
...

f1(xn) · · · fn(xn)

3
75
2
64

c1
...

cn

3
75 =

2
64

0
...

0

3
75 (7)

を考えれば、この係数行列の行列式 |[fj(xi)]| が 0 でなければ、その逆行列が存在し
て c1 = · · · = cn = 0 となり、一次独立であることが言える、という方法である。

関数に積が含まれている場合など、関数の導関数がかなり複雑な式になってしまう場
合は、ロンスキー行列式よりもこちらの方が楽になるし、場合によっては、微分によっ
て式を増やす方法と複数の値を代入する方法の組み合わせてもよい。

例 6

f1(x) = x2 sin x, f2(x) = x2 cos x, f3(x) = e2x sin x, f4(x) = e2x cos x の一次独立性
を調べるために、ロンスキー行列式を計算しようとすれば、例えば f1, f3 の導関
数を見ると、

• f ′
1(x) = x2 cos x+ 2x sin x, f ′

3(x) = 2e2x sin x+ e2x cos x,

• f ′′
1 (x) = (2− x2) sin x+ 4x cos x f ′′

3 (x) = 3e2x sin x+ 4e2x cos x,

• f ′′′
1 (x) = (6− x2) cos x− 6x sin x f ′′′

3 (x) = 2e2x sin x+ 11e2x cos x,
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のようになり、f2, f4 も同様のような形になるので、ロンスキー行列式の計算は相
当大変である。
それに対して、代入法で方程式を増やすだけなら、例えば、x = 0, π/2, π, 3π/2 の
4 点での式を考えれば、f(x) = T[f1(x) f2(x) f2(x) f4(x)] とすれば、

A =

�
f(0) f

(
π

2

)
f(π) f

(
3π

2

)�
=

2
666664

0
π2

4
0 −9π2

4
0 0 −π2 0

0 eπ 0 −e3π

1 0 −e2π 0

3
777775

となるので、

|A| = π4

4

∣∣∣∣∣∣∣∣
1 0 −9

0 1 0

eπ 0 e3π

∣∣∣∣∣∣∣∣ =
π4

4
(e3π + 9eπ) > 0

となって一次独立であることが示される。この場合はロンスキー行列式の計算よ
りもこちらの方がだいぶ楽である。

6 ロンスキー行列式が恒等的に 0 の場合

最後に、ロンスキー行列式が恒等的に 0 の場合でも、関数の集まりが一次従属とは限
らないこと、すなわち、定理 5 の逆は成立しないことを示す。

簡単な反例は、ロンスキー行列式の Wikipedia ([1]) にも載っている、f1(x) = x2 と
f2(x) = x|x| である。f2(x) は、f1(x) の放物線の x < 0 の方を上下反転させたものに
なっているが、x = 0 で x 軸に 2 次に接しているので、f1, f2 は 1 回微分可能で、導
関数 f ′

1(x) = 2x, f ′
2(x) = 2|x| も連続となる。このとき、f1, f2 のロンスキー行列式は、

W (x; f1, f2) =

∣∣∣∣∣ x2 x|x|
2x 2|x|

∣∣∣∣∣ = 2x2|x| − 2x2|x| = 0

となって恒等的に 0 になる。x ≤ 0 だけみれば f2(x) = −f1(x) で、x ≥ 0 だけみれば
f2(x) = f1(x) なので、それぞれ一次従属であるが、実数全体でみれば一次従属ではな
いので (一方が他方の実数倍では表せない)、これがロンスキー行列式は恒等的に 0 だ
が一次従属ではない例のひとつとなる。

このように、区分的には一次従属であり、全体で見れば一次従属ではない例はいくら
でも作ることができて、例えば n 個の関数の例も上の例を発展させれば以下のように
作ることができる。
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例 7

n ≥ 2, 1 ≤ j ≤ n− 2 に対し、

g0(x) =

{
−1 (x < 0)

1 (x ≥ 0)
, gj(x) =


1 (x < j − 1)

−1 (j − 1 ≤ x < j)

1 (x ≥ j)

とし、

f1(x) = xn(x− 1)n · · · (x− n+ 2)n,

f2(x) = f1(x)g0(x), fj(x) = f1(x)gj−2(x) (j = 3, . . . , n)

とすると、

• fj(x) はいずれも x = k (0 ≤ k ≤ n − 2) で x 軸に n 次で接しているので
(n− 1) 回微分可能、(n− 1) 階導関数まで連続

• 各区間 (−∞, 0), (j − 1, j) (1 ≤ j ≤ n− 2) では互いに ±1 倍が違うだけなの
で一次従属であり、よって W (x) もその区間では 0、(n− 2,∞) ではすべて
等しいので W (x) = 0

• W (x) は連続なので、区間の端でも W (x) = 0 となり、W (x) は恒等的に 0

• x全体でみれば、c1f1(x)+ · · ·+cnfn(x) = 0とすると、x = k (0 ≤ k ≤ n−2)

以外では c1 + c2g0(x) + c3g1(x) + · · ·+ cngn−2(x) = 0 となり、いずれも階段
関数なので、この関係は、

c1 − c2 + c3 + c4 + · · ·+ cn = 0 (x < 0)

c1 + c2 − c3 + c4 + · · ·+ cn = 0 (0 < x < 1)

c1 + c2 + c3 − c4 + · · ·+ cn = 0 (1 < x < 2)

· · ·
c1 + c2 + c3 + c4 + · · · − cn = 0 (n− 3 < x < n− 2)

c1 + c2 + c3 + c4 + · · ·+ cn = 0 (n− 2 < x)

と同値で、この係数の行列式 I が I 6= 0 なら c1 = · · · = cn = 0 で、逆に
I = 0 ならばこの関係を満たす、少なくとも 1 つは 0 ではない cj の組が存
在することになるが、

I =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 1 · · · 1

1 1 −1 · · · 1
...

...

1 1 1 · · · −1

1 1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −2 0 · · · 0

1 0 −2 · · · 0
...

...

1 0 0 · · · −2

1 0 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n+1

∣∣∣∣∣∣∣∣∣
−2 O

. . .

O −2

∣∣∣∣∣∣∣∣∣ = (−1)n+1(−2)n−1 6= 0
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なので、c1 = · · · = cn = 0 となり、よって f1, . . . , fn は一次独立である。

これで、(n− 1) 階まで導関数が連続で、f1(x), . . . , fn(x) が一次独立であるが、そ
のロンスキー行列式が実数全体で 0 となる例が作られたことになる。

7 最後に

本稿では、関数の一次独立性や、それに関係するロンスキー行列式について解説した。

1 節に書いた、「教科書には通常書かれていないこと」というのは 6 節の話であるが、
私も定理 5 の逆が成立しないことは知っていたが、x2 と x|x| で簡単に反例が作れる
ことは [1] を見るまで知らなかった。私はむしろ、解析学、偏微分方程式では良く使わ
れるコンパクト台の C∞ 関数で反例を作ろうとしていたのだが、それは解析屋の悪い
癖のようなものだと反省した。
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