¼¡¤Ø: 12 Ê¿¶Ñ²ó¿ô¤Î¿ôÃÍ·×»»·ë²Ì ¾å¤Ø: sort1 Á°¤Ø: 10 ÊýË¡ A, B ¤ÎÈæ³Ó (PDF ¥Õ¥¡¥¤¥ë: sort1-2.pdf)


11 Áý²ÃÎó¥Ö¥í¥Ã¥¯¿ô¤ÎʬÉÛ

$1\sim N$ ¤Î $N!$ Ä̤ê¤Î½çÎó¤ËÂФ·¤Æ¡¢Áý²ÃÎó¥Ö¥í¥Ã¥¯¿ô¤¬ ¤É¤Î¤è¤¦¤ËʬÉÛ¤·¤Æ¤¤¤ë¤Î¤«¤òÄ´¤Ù¤ë¤³¤È¤Ë¤¹¤ë¡£


ÄêµÁ 8

$A^N_k$ = $1\sim N$ ¤Î½çÎó¤ÎÃæ¤Ç¡¢Áý²ÃÎó¥Ö¥í¥Ã¥¯¿ô¤¬ $k$ ¤Ç¤¢¤ë¤â¤Î¤Î¸Ä¿ô ($1\leq k\leq N$)


Î㤨¤Ð¡¢$N=3$ ¤Î¤È¤­¤Ï¡¢$A^3_1=1$ ((1,2,3) ¤Î°ì¤Ä), $A^3_2=4$, $A^3_3=1$ ((3,2,1) ¤Î°ì¤Ä)¡¢ $N=4$ ¤Î¤È¤­¤Ï $(A^4_1,A^4_2,A^4_3,A^4_4)=(1,11,11,1)$ ¤Ç¤¢¤ë¡£ Íưפ˼¡¤¬¸À¤¨¤ë¡£

\begin{displaymath}
A^N_1=A^N_N=1,\hspace{1zw}\sum_{k=1}^N A^N_k = N!
\end{displaymath}

¤Þ¤¿¡¢ÂоÎÀ­
\begin{displaymath}
A^N_k = A^N_{N-k+1}\end{displaymath} (3)

¤âÀ®¤êΩ¤Á¤½¤¦¤Ë¸«¤¨¤ë¤¬¡¢¤³¤ì¤Ï¤½¤¦Æñ¤·¤¯¤Ê¤¯¼¨¤µ¤ì¤ë¡£

Î㤨¤Ð¡¢1,3,2,4 ¤ÏÁý²ÃÎó 2 ¥Ö¥í¥Ã¥¯¤Ç¤¢¤ë¤¬¡¢¤³¤ì¤òµÕž¤µ¤»¤¿Îó 4,2,3,1 ¤ÏÁý²ÃÎó 3 (=4-2+1) ¥Ö¥í¥Ã¥¯¤Ë¤Ê¤ë¡£ ¤³¤ÎµÕžÎó¤ÎÂбþ¤ò¹Í¤¨¤ë¤È¡¢Áý²ÃÎó 2 ¥Ö¥í¥Ã¥¯¤Î¤â¤Î¤È Áý²ÃÎó 3 ¥Ö¥í¥Ã¥¯¤Î¤â¤Î¤¬ 1 ÂÐ 1 ¤ËÂбþ¤¹¤ë¤³¤È¤Ë¤Ê¤ë¡£ ¤è¤Ã¤Æ $A^4_2 = A^4_3$ ¤È¤Ê¤ë¡£°ìÈ̤Π$N$,$k$ ¤Î¾ì¹ç¤âƱÍͤǤ¢¤ë¡£

°Ê¹ß¤Ï¡¢¤³¤Î $A^N_k$ ¤ò $N$, $k$ ¤Î¼°¤Çɽ¤ï¤¹¤³¤È¤ò¹Í¤¨¤Æ¤ß¤ë¡£ Î㤨¤Ð¡¢$N=3$, $k=2$ ¤Î¾ì¹ç¤Î $A^3_2$ ¤Ï¡¢

(1,3,2), (2,1,3), (2,3,1), (3,1,2)
¤Î 4 ¤Ä¤Ç¤¢¤ë¤¬¡¢¤³¤ì¤Ï 1,2,3 ¤Î¿ô»ú¤ò 2 ¤Ä¤ÎÁȤËʬ¤±¤Æ¡¢ ¤½¤ì¤¾¤ì¤ò¾º½ç¤ËÀ°Î󲽤·¤¿¤â¤Î¤òʤ٤ƽñ¤¤¤¿¡¢¤È¸«¤ë¤³¤È¤¬¤Ç¤­¤ë:

\begin{displaymath}
1,2,3 \rightarrow \left\{\begin{array}{l}2, 3 1\end{array}\right. \rightarrow (2,3,1)
\end{displaymath}

1,2,3 ¤ò 2 ¤Ä¤Î¥Ö¥í¥Ã¥¯¤Ëʬ¤±¤ë¤ä¤êÊý¤Ï¡¢ ³Æ¥Ö¥í¥Ã¥¯¤Ë $B_1$, $B_2$ ¤ÎÈÖ¹æ¤ò¤Ä¤±¤Æ¡¢ 1,2,3 ³Æ¡¹¤¬¤½¤Î¤É¤Á¤é¤ËÆþ¤ë¤«¤ò¹Í¤¨¤ì¤Ð $2^3=8$ Ä̤ꤢ¤ë¤¬¡¢ ¤·¤«¤·¤³¤ì¤Ë¤ÏÁý²ÃÎó 2 ¥Ö¥í¥Ã¥¯¤òÀ¸À®¤·¤Ê¤¤Í¾·×¤Ê¤â¤Î 4 ¤Ä¤¬´Þ¤Þ¤ì¤ë:
{(1,2,3),()}, {(1,2),(3)}, {(1),(2,3)}, {(),(1,2,3)} (Á°¤ÎÊý¤¬ $B_1$)
¤³¤ì¤é¤Ï¡¢ËÜÍè 1 ¥Ö¥í¥Ã¥¯¤ÎÊÂ¤Ó (1,2,3) ¤Ë»ÅÀÚ¤ê¤òÆþ¤ì¤Æʬ¤±¤¿¤â¤Î¤Î ¸Ä¿ô $= 3+1 = 4$ ¤ËÅù¤·¤¤¡£¤è¤Ã¤Æ¡¢

\begin{displaymath}
A^3_2 = 2^3-4 = 4
\end{displaymath}

¤È¤Ê¤ë¡£

ƱÍͤˡ¢$N=4$, $k=2$ ¤Î¾ì¹ç¤Ï¡¢$2^4$ Ä̤꤫¤é (1,2,3,4) ¤Ë°ì¤Ä¤Î»ÅÀÚ¤ê¤ò Æþ¤ì¤ëÆþ¤ìÊý¤Ç¤¢¤ë 5 Ä̤ê¤ò°ú¤¤¤¿

\begin{displaymath}
A^4_2 = 2^4 - 5 = 11
\end{displaymath}

¤È¤Ê¤ë¡£

$N=4$, $k=3$ ¤Î¾ì¹ç¤â¡¢1,2,3,4 ¤ò 3 ¤Ä¤Î¥Ö¥í¥Ã¥¯¤Ëʬ¤±¤Æ ¤½¤ì¤¾¤ì¤òÀ°Î󲽤·¤Æʤ٤ƽñ¤¤¤Æ¡¢¤½¤³¤«¤é;·×¤Ê¤â¤Î¤ò°ú¤±¤Ð¤è¤¤¡£ 3 ¤Ä¤Î¥Ö¥í¥Ã¥¯¤Îʬ¤±Êý¤ÎÁí¿ô¤Ï $3^4$¡¢Í¾·×¤Ê¤â¤Î¤Ï¡¢ (1,2),(3),(4) ¤Î¤è¤¦¤Ë¡¢1 ¥Ö¥í¥Ã¥¯¤Î¤â¤Î¤ò 3 ¥Ö¥í¥Ã¥¯¤Ëʬ¤±¤¿¤â¤Î¡¢ ¤ª¤è¤Ó (1,2),(4),(3) ¤Î¤è¤¦¤Ë¡¢2 ¥Ö¥í¥Ã¥¯¤Î¤â¤Î¤ò 3 ¥Ö¥í¥Ã¥¯¤Ëʬ¤±¤¿¤â¤Î ¤Î 2 ¼ïÎब¤¢¤ë¡£

2 ¥Ö¥í¥Ã¥¯¤Î¤â¤Î¤ò 3 ¥Ö¥í¥Ã¥¯¤Ëʬ¤±¤ë¤ä¤êÊý¤Ï¡¢Î㤨¤Ð (1,2,4),(3) ¤Î¾ì¹ç¡¢

\begin{displaymath}
\begin{array}{l}
\{(),(1,2,4),(3)\} (\mbox{$B_1$ ¤¬¶õ}),
...
... ¤¬¶õ}),
 \{(1,2,4),(3),()\} (\mbox{$B_3$ ¤¬¶õ})
\end{array}\end{displaymath}

¤Î 5 Ä̤ꤢ¤ë ($=$ 5 ²Õ½ê¤Ë 1 ¤Ä¤Î»ÅÀÚ¤ê¤òÆþ¤ì¤ëÊýË¡)¡£ 2 ¥Ö¥í¥Ã¥¯¤ÏÁ´Éô¤Ç $A^4_2$ ¤À¤±¤¢¤ë¤«¤é¡¢ 2 ¥Ö¥í¥Ã¥¯¤Î¤â¤Î¤ò 3 ¥Ö¥í¥Ã¥¯¤Ëʬ¤±¤¿¤â¤Î¤ÎÁí¿ô¤Ï $5\cdot A^4_2$ ¤È¤Ê¤ë¡£

1 ¥Ö¥í¥Ã¥¯¤Î¤â¤Î¤ò 3 ¥Ö¥í¥Ã¥¯¤Ëʬ¤±¤ë¤ä¤êÊý¤Ï¡¢Î㤨¤Ð

\begin{displaymath}
(1),(),(2,3,4)
\end{displaymath}

¤Î¤è¤¦¤Ë¤Ê¤ë¤¬¡¢¤³¤ì¤Ï 5 ²Õ½ê¤Ë 2 ¤Ä¤Î»ÅÀÚ¤ê¤òÆþ¤ì¤ëÆþ¤ìÊý¤Ç¡¢ ¡û 4 ¤Ä¤È¡ß 2 ¤Ä¤òʤ٤ëÁí¿ô¤ËÅù¤·¤¯¡¢¤è¤Ã¤Æ¤³¤ì¤Ï

\begin{displaymath}
\left(\begin{array}{c} 4+2  2 \end{array}\right)
\end{displaymath}

¤ËÅù¤·¤¤¡£¤è¤Ã¤Æ¡¢·ë¶É

\begin{displaymath}
A^4_3 = 3^4 - 5A^4_2 - \left(\begin{array}{c} 4+2  2 \end{array}\right)A^4_1 = 81-55-15 = 11
\end{displaymath}

¤È¤Ê¤ë¡£

¤³¤ì¤ò³¤±¤ë¤È¡¢·ë¶É¼¡¤ÎÁ²²½¼°¤¬ÆÀ¤é¤ì¤ë¤³¤È¤Ë¤Ê¤ë¡£

\begin{displaymath}
\left\{\begin{array}{lll}
A^N_k & = k^N - \displaystyle \s...
...ight)A^N_{k-j} & (k\geq 2),\\
A^N_1 & = 1
\end{array}\right.\end{displaymath} (4)

¤³¤³¤«¤é $A^N_k$ ¤Î¼°¤ò¿äÏÀ¤¹¤ë¤¿¤á¤Ë¡¢2,3 ¤Î·×»»¤ò¤·¤Æ¤ß¤ë¡£

\begin{eqnarray*}A^N_2
&=&
2^N-\left(\begin{array}{c} N+1  1 \end{array}\ri...
...3^N - (N+1)2^N+\left(\begin{array}{c} N+1  2 \end{array}\right)\end{eqnarray*}

ƱÍͤˡ¢

\begin{displaymath}
A^N_4 = 4^N-\left(\begin{array}{c} N+1  1 \end{array}\righ...
...}\right)2^N-\left(\begin{array}{c} N+1  3 \end{array}\right)
\end{displaymath}

¤È¤Ê¤ë¤³¤È¤â¸À¤¨¤ë¤Î¤Ç¡¢°ìÈ̤ˡ¢
\begin{displaymath}
A^N_k = \sum_{j=0}^{k-1}(-1)^j\left(\begin{array}{c} N+1  j \end{array}\right)(k-j)^N\end{displaymath} (5)

¤Ç¤¢¤ë¤³¤È¤¬Í½ÁÛ¤µ¤ì¤ë¡£ ¤³¤ì¤ò¡¢(4) ¤òÍѤ¤¤Æ¾ÚÌÀ¤¹¤ë¡£

¤½¤Î¤¿¤á¤Ë¤Þ¤º¡¢¼¡¤ÎÊäÂê¤ò¼¨¤¹¡£


ÊäÂê 9

Á´¤Æ ¤Î $1\leq q\leq N+1$ ¤ËÂФ·¤Æ¡¢¼¡¤¬À®¤êΩ¤Ä¡£

\begin{displaymath}
\sum_{j=1}^{q}(-1)^{j+1}\left(\begin{array}{c} N+j  j \en...
...}\right) = \left(\begin{array}{c} N+1  q \end{array}\right)
\end{displaymath} (6)


¾ÚÌÀ


\begin{displaymath}
\left(\begin{array}{c} N+j  j \end{array}\right) = \left(...
...  N \end{array}\right) = \frac{(N+j)(N+j-1)\cdots(1+j)}{N!}
\end{displaymath}

¤Ç¤¢¤ê¡¢¤³¤ì¤Ï´Ø¿ô $x^{N+j}/N!$ ¤ò $N$ ²óÈùʬ¤·¤¿·¸¿ô¡¢¤¹¤Ê¤ï¤Á $N$ ²óÈùʬ¤·¤Æ $x=1$ ¤È¤·¤¿¤â¤Î¤ËÅù¤·¤¤:

\begin{displaymath}
\left(\frac{d}{dx}\right)^N\left(\frac{x^{N+j}}{N!}\right)
= \frac{(N+j)(N+j-1)\cdots(1+j)}{N!}x^j
\end{displaymath}

¤è¤Ã¤Æ¡¢
\begin{displaymath}
f(x) = \sum_{j=1}^q(-1)^{j+1}\left(\begin{array}{c} N+1  q-j \end{array}\right)\frac{x^{N+j}}{N!}
\end{displaymath} (7)

¤È¤¹¤ì¤Ð¡¢(6) ¤Îº¸ÊÕ¤Ï $f(x)$ ¤ò $N$ ²óÈùʬ¤·¤Æ $x=1$ ¤òÂåÆþ¤·¤¿¤â¤Î¡¢¤¹¤Ê¤ï¤Á $f^{(N)}(1)$ ¤ËÅù¤·¤¤¡£

¤È¤³¤í¤Ç¡¢$f(x)$ ¤Ï $(N+1)$ ¤«¤é $(N+q)$ ¼¡¤Î¹à¤«¤é¤Ê¤ë¿¹à¼°¤Ç¤¢¤ë¤¬¡¢ ¤³¤ì¤Ë $x^{N-1}$ ¼¡°Ê²¼¤Î¹à¤ò¤Ä¤±²Ã¤¨¤Æ¤â $N$ ²óÈùʬ¤Ë¤Ï±Æ¶Á¤Ï¤Ê¤¤¡£ ¤è¤Ã¤Æ¡¢

\begin{displaymath}
g(x) = \sum_{j=q-N-1}^q(-1)^{j+1}\left(\begin{array}{c} N+1  q-j \end{array}\right)\frac{x^{N+j}}{N!}
\end{displaymath} (8)

¤È¤¹¤ë¤È¡¢

\begin{eqnarray*}g(x)
&=&
f(x) + \sum_{j=q-N-1}^0(-1)^{j+1}\left(\begin{arra...
...begin{array}{c} N+1  q-j \end{array}\right)\frac{x^{N+j}}{N!}
\end{eqnarray*}

¤È¤Ê¤ë¤Î¤Ç¡¢¤³¤ì¤ò $N$ ²óÈùʬ¤¹¤ë¤È¡¢
\begin{displaymath}
g^{(N)}(x) = f^{(N)}(x) - \left(\begin{array}{c} N+1  q \end{array}\right)
\end{displaymath} (9)

¤È¤Ê¤ë¡£¤È¤³¤í¤Ç $g(x)$ ¤Ï¡¢$j=q-i$ ¤È¤·¤ÆÊÑ·Á¤¹¤ë¤È

\begin{eqnarray*}g(x)
& = &
\sum_{i=0}^{N+1}(-1)^{q+1-i}\left(\begin{array}{c...
...ight)x^{N+1-i}
 &=&
\frac{(-1)^{N+q}}{N!}x^{q-1}(1-x)^{N+1}
\end{eqnarray*}

¤Ç¤¢¤ê¡¢$N$ ²óÈùʬ¤ò¹Ô¤Ê¤¦¤È¡¢ÀѤÎÈùʬ¤Ç¸½¤ì¤ëÁ´¤Æ¤Î¹à¤Ë ¾¯¤Ê¤¯¤È¤â $(1-x)^1$ ¤¬´Þ¤Þ¤ì¤ë¤³¤È¤Ë¤Ê¤ë¤Î¤Ç¡¢ ÌÀ¤é¤«¤Ë $g^{(N)}(1)=0$ ¤Ç¤¢¤ë¡£¤è¤Ã¤Æ¡¢(9) ¤è¤ê

\begin{displaymath}
f^{(N)}(1) = g^{(N)}(1) + \left(\begin{array}{c} N+1  q \...
...}\right) = \left(\begin{array}{c} N+1  q \end{array}\right)
\end{displaymath}

¤È¤Ê¤Ã¤Æ (6) ¤Î±¦ÊÕ¤ËÅù¤·¤¤¤³¤È¤¬¸À¤¨¤ë¡£


(5) ¤Î¾ÚÌÀ

$k$ ¤Ë´Ø¤¹¤ëµ¢Ç¼Ë¡¤Ë¤è¤ê (5) ¤ò¾ÚÌÀ¤¹¤ë¡£

$k=1$ ¤Î¤È¤­¤Ï¡¢

\begin{displaymath}
% latex2html id marker 2533\mbox{(\ref{eq:ANk:general}) ¤...
...^0\left(\begin{array}{c} N+1  0 \end{array}\right)(1-0)^N=1
\end{displaymath}

¤è¤ê O.K.

$k=1\sim (m-1)$ ¤ËÂФ·¤Æ (5) ¤¬À®¤êΩ¤Ä¤È¤·¤Æ¡¢ $k=m$ ¤ËÂФ·¤Æ (5) ¤¬À®¤êΩ¤Ä¤³¤È¤ò¼¨¤¹ ($m\geq 2$)¡£ (4) ¤è¤ê¡¢

\begin{displaymath}
A^N_m = m^N - \sum_{j=1}^{m-1}\left(\begin{array}{c} N+j  j \end{array}\right)A^N_{m-j}
\end{displaymath}

¤Ç¤¢¤ë¤¬¡¢±¦ÊդΠ$A^N_{m-j}$ ¤Ë¤Ï²¾Äê¤è¤ê (5) ¤¬ »È¤¨¤ë¤Î¤Ç¡¢

\begin{eqnarray*}A^N_m
&=&
m^N-\sum_{j=1}^{m-1}\left(\begin{array}{c} N+j \\...
...ray}\right)\left(\begin{array}{c} N+1  q-j \end{array}\right)
\end{eqnarray*}

¤È¤Ê¤ë¡£¤è¤Ã¤Æ¡¢ÊäÂê 9 ¤Ë¤è¤ê

\begin{displaymath}
A^N_m = m^N+\sum_{q=1}^{m-1}(-1)^q(m-q)^N\left(\begin{array...
...1)^q(m-q)^N\left(\begin{array}{c} N+1 \ q \end{array}\right)
\end{displaymath}

¤È¤Ê¤ê¡¢(5) ¤¬ $k=m$ ¤ËÂФ·¤ÆÀ®¤êΩ¤Ä¤³¤È¤Ë¤Ê¤ë¡£


¤Ê¤ª¡¢¤¤¤¯¤Ä¤«¤Î $N$ ¤ËÂФ¹¤ë $A^N_k$ ¤ÎÃͤò¾Ò²ð¤¹¤ë¤È¡¢ °Ê²¼¤Î¤è¤¦¤Ë¤½¤ÎÃÍ¤Ï $N$ ¤ÎÁý²Ã¤ËÂФ·¤ÆµÞ·ã¤ËÂ礭¤¯¤Ê¤ë¤³¤È¤¬¤ï¤«¤ë¡£

$N$ $(A^N_1,A^N_2,\ldots,A^N_N)$
3 (1, 4, 1)
4 (1, 11, 11, 1)
5 (1, 26, 66, 26, 1)
6 (1, 57, 302, 302, 57, 1)
7 (1, 120, 1191, 2416, 1191, 120, 1)
8 (1, 247, 4293, 15619, 15619, 4293, 247, 1)
9 (1, 502, 14608, 88234, 156190, 88234, 14608, 502, 1)
10 (1, 1013, 47840, 455192, 1310354, 1310354, 455192, 47840, 1013, 1)


¼¡¤Ø: 12 Ê¿¶Ñ²ó¿ô¤Î¿ôÃÍ·×»»·ë²Ì ¾å¤Ø: sort1 Á°¤Ø: 10 ÊýË¡ A, B ¤ÎÈæ³Ó
ÃÝÌîÌм£¡÷¿·³ã¹©²ÊÂç³Ø
2006ǯ2·î24Æü