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1 はじめに

広義積分には、積分区間が有限で区間の端で関数が無限大になる広義積分と、積分
区間が無限に長い広義積分の 2 種類がある。いずれも無限に長く伸びる領域の面積を
求めることに対応し、それらは有限な領域の面積の極限として定義される。

特に狭義単調関数の場合は、その広義積分と逆関数の広義積分が同じ図形でこの 2

種類の積分になるが、しかし広義積分の極限の取り方は両者で同一ではないので、そ
れらの値が同一であるかどうかは自明ではない。本稿ではそれについて考察する。

2 設定と目標

まずは本稿での設定と目標を示す。

a ≥ 0 とし, 関数 y = f(x) は [a,∞) で正値の狭義単調減少な連続関数で、

lim
x→∞

f(x) = 0 (1)

とする。すると A = f(a) によって (0, A] 上の y = f(x) の逆関数 x = f−1(y) が存在
し、正値の狭義単調減少な連続関数で、

lim
y→+0

f−1(y) = ∞ (2)

となる (図 1)。

このとき、両者の広義積分


I1 =

∫ ∞

a
f(x)dx = lim

b→∞

∫ b

a
f(x)dx

I2 =
∫ A

0
f−1(y)dy = lim

B→+0

∫ A

B
f−1(y)dy

(3)
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図 1: y = f(x) と x = f−1(y)

が、必ず

I2 = I1 + aA (4)

となるのかどうかを考察するのが本稿の目標である。

これらの積分は、無限に伸びる図形としては対応しているのであるが、広義積分の
取り方は、いずれも縦に有限な部分を切り落としてその極限とする (図 2) ので、I2 の
図形を I1 の方に揃えて x, y を入れ変えて考えれば、I1 の方は鉛直方向に切って、そ
れを水平に (右に) 伸ばしていく極限、I2 の方は水平方向に切って、それを鉛直に (下
に) 伸ばしていく極限、ということになる
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図 2: 広義積分のそれぞれの極限の取り方

このように、極限の取り方が両者で違っているので、I1, I2 の収束・発散が同時に起
こるか、また (4) が成立するかどうかは自明ではない。
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3 逆関数の積分

広義積分ではない通常の定積分については、逆関数の積分と元の関数の積分には、次
のような関係が成り立つ。

定理 3.1 y = g(x) が [a, b] 上の狭義単調な連続関数のとき、

∫ g(b)

g(a)
g−1(y)dy = [xg(x)]ba −

∫ b

a
g(x)dx (5)

もし g(x) が C1 級、すなわち g(x) が微分可能で g′(x) も連続ならば定理 3.1 は比
較的容易に証明できる。それは、(5) の左辺を y = g(x) と置換して部分積分を利用す
れば、

∫ g(b)

g(a)
g−1(y)dy =

∫ b

a
g−1(g(x))g′(x)dx =

∫ b

a
xg′(x)dx = [xg(x)]ba −

∫ b

a
g(x)dx

となるからである。

g(x) の C1 級を仮定しないと少し証明は厄介だが、以下のようにすれば証明できる。
なお、とりあえず g(x) は単調増加と仮定するが、g(x) が単調減少のときは、−g(x) が
単調増加となり、−g(x) について定理 3.1 が成立すれば g(x) についても成立すること
は容易にわかるので、単調増加の場合のみ示せばよい。

区間 [a, b] の分割を ∆、その最大幅を |∆| とする:

∆ : a = x0 < x1 < · · · < xN = b、 |∆| = max
1≤k≤N

(xk − xk−1)

この ∆ に対し、各区間での左端の点から g(x) のリーマン和 s1(∆) を作る:

s(∆) =
N∑
k=1

g(xk−1)(xk − xk−1) (6)

g(x) が連続なので、良く知られているようにこれは

s(∆) →
∫ b

a
g(x)dx (N → ∞, |∆| → 0 のとき) (7)

に収束する。一方、yk = g(xk) (0 ≤ k ≤ N) とし、分割 ∆ の g による像を g(∆)、そ
の最大幅を |g(∆)| とする:

g(∆) : g(a) = y0 < y1 < · · · < yN = g(b), |g(∆)| = max
1≤k≤N

(yk − yk−1)
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そして g(∆) の各区間での右端の点から g−1(y) のリーマン和 S(g(∆)) を作る:

S(g(∆)) =
N∑
k=1

g−1(yk)(yk − yk−1) (8)

g(x) は [a, b] 上で一様連続なので、N → ∞, |∆| → 0 に対して |g(∆)| → 0 となり、
よってこのリーマン和 S(g(∆)) についても

S(g(∆)) →
∫ g(b)

g(a)
g−1(y)dy (N → ∞, |∆| → 0 のとき) (9)

が言える。ここで、s(∆) と S(g(∆)) の和は、

s(∆) + S(g(∆)) =
N∑
k=1

yk−1(xk − xk−1) +
N∑
k=1

xk(yk − yk−1)

=
N∑
k=1

(xkyk − xk−1yk−1) = xNyN − x0y0 = bg(b)− ag(a)

となるので、この式で N → ∞, |∆| → 0 とすれば、(7), (9) より (5) が得られ定理
3.1 が証明されることになる。

4 広義積分の同等性: その 1

本節では、次を示す。

命題 4.1 I2 が収束すれば I1 も収束し、(4) が成立する。

まず、前節の定理 3.1 より、a < b なる任意の b に対して B = f(b) とすると、

∫ A

B
f−1(y)dy =

∫ f(a)

f(b)
f−1(y)dy = aA− bB +

∫ b

a
f(x)dx (10)

となる。この式で b → ∞ とすることを考えるが、B = f(b) → +0 より、(4) が成立
することはほぼ「bB → 0」となるときであることがわかる。一方で bB の極限 ∞× 0

の不定形なので 0 に収束することは自明ではない。しかし、I2 < ∞ のときは次が言
える。
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補題 4.2 I2 < ∞ のとき、a < b なる任意の b, B = f(b) に対し、

∫ B

0
f−1(y)dy ≥ bB > 0 (11)

証明

a < b < d なる任意の d に対して D = f(d) とすると、D ≤ y ≤ B 上では
f−1(y) ≥ f−1(B) なので、

∫ B

D
f−1(y)dy ≥ f−1(B)(B −D) = b(B −D) ≥ 0 (12)

となる。よって I2 < ∞ より (12) で D → +0 とすれば (11) が得られる。

I2 < ∞ のときは B → +0 のとき

∫ B

0
f−1(y)dy → 0

となるので、(11) より bB → 0 が成り立つ。よって、(10) で B → +0 (b → ∞) とす
れば (10) の左辺は I2 に収束するから右辺の積分も有限値 I1 に収束し、かつ (4) が成
立することがわかる。これで命題 4.1 が成り立つことが示された。

5 広義積分の同等性: その 2

次は、以下を示す。

命題 5.1 I1 が収束すれば I2 も収束し、(4) が成立する。

これが言えれば、I1 と I2 が同時に収束・発散することが示されることになり、広義
積分の同等性が保証されることになる。

しかし、I1 < ∞ のときは補題 4.2 に相当することを示すことができず、すなわち
(10) の bB が 0 に収束することを直接示すことができない。よって、命題 5.1 は命題
4.1 の力を借りて証明する。
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(10) より、任意の 0 < B < A, b = f−1(B) に対し、

∫ A

B
f−1(y)dy = aA− bB +

∫ b

a
f(x)dx < aA+

∫ b

a
f(x)dx < aA+ I1 (13)

となり、この左辺は B に関して単調であるから、I1 < ∞ のときは、(13) の左辺の積
分の B → +0 の極限 I2 は

I2 ≤ aA+ I1 < ∞

と有限値に収束することがわかる。よって、命題 4.1 により (4) が成立するので (当然
補題 4.2 も成り立つ)、これで 命題 5.1 が示されたことになる。

6 最後に

5 節の「I1 < ∞ のときは補題 4.2 に相当することを示すことができず」というのが
まさに I1 と I2 の切り方の違いに由来していて、よって本稿の内容はそれほど自明で
はないと思うが、こういう話はほぼ見たことがない。

それは、もしかすると、実際には本稿にあるように案外簡単に示せることなので、皆
書くまでもないと思っている話だったいるするのかもしれないし、たいして役に立つ
話ではないのでスルーしているのかもしれない。


